【題目】為了解某市九年級學(xué)生學(xué)業(yè)考試體育成績,現(xiàn)從中隨機抽取部分學(xué)生的體育成績進行分段(A:50分;B:49﹣45分;C:44﹣40分;D:39﹣30分;E:29﹣0分)統(tǒng)計如下:
學(xué)業(yè)考試體育成績(分數(shù)段)統(tǒng)計表
分數(shù)段 | 人數(shù)(人) | 頻率 |
A | 48 | 0.2 |
B | a | 0.25 |
C | 84 | 0.35 |
D | 36 | b |
E | 12 | 0.05 |
根據(jù)上面提供的信息,回答下列問題:
(1)在統(tǒng)計表中,a的值為 ,b的值為 ,并將統(tǒng)計圖補充完整(溫馨提示:作圖時別忘了用0.5毫米及以上的黑色簽字筆涂黑);
(2)甲同學(xué)說:“我的體育成績是此次抽樣調(diào)查所得數(shù)據(jù)的中位數(shù).”請問:甲同學(xué)的體育成績應(yīng)在什么分數(shù)段內(nèi)? (填相應(yīng)分數(shù)段的字母)
(3)如果把成績在40分以上(含40分)定為優(yōu)秀,那么該市今年10440名九年級學(xué)生中體育成績?yōu)閮?yōu)秀的學(xué)生人數(shù)約有多少名?
【答案】(1)a=60, b=0.15,圖詳見解析;(2)中位數(shù)在C分數(shù)段;(3)8352
【解析】
(1)首先根據(jù):頻數(shù)÷總數(shù)=頻率,由表格A中的數(shù)據(jù)可以求出隨機抽取部分學(xué)生的總?cè)藬?shù),然后根據(jù)B中頻率即可求解a,同時也可以求出b;
(2)根據(jù)中位數(shù)的定義可以確定中位數(shù)的分數(shù)段,然后確定位置;
(3)首先根據(jù)頻率分布直方圖可以求出樣本中在25分以上(含25分)的人數(shù),然后利用樣本估計總體的思想即可解決問題.
解:(1)隨機抽取部分學(xué)生的總?cè)藬?shù)為:48÷0.2=240,
∴a=240×0.25=60,
b=36÷240=0.15,
如圖所示:
故答案為:60;0.15;
(2)∵總?cè)藬?shù)為240人,
∴根據(jù)頻率分布直方圖知道中位數(shù)在C分數(shù)段;
故答案為:C;
(3)0.8×10440=8352(名)
答:該市九年級考生中體育成績?yōu)閮?yōu)秀的學(xué)生人數(shù)約有8352名.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸,軸分別交于兩點,動點在線段上移動(與不重合),以為頂點作交軸于點.
(1)求點和點的坐標;
(2)求證:.
(3)是否存在點使得是等腰三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點,直線y=2與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,M、N分別是射線CB和射線DC上的動點,且始終∠MAN=45°.
(1)如圖1,當(dāng)點M、N分別在線段BC、DC上時,請直接寫出線段BM、MN、DN之間的數(shù)量關(guān)系;
(2)如圖2,當(dāng)點M、N分別在CB、DC的延長線上時,(1)中的結(jié)論是否仍然成立,若成立,給予證明,若不成立,寫出正確的結(jié)論,并證明;
(3)如圖3,當(dāng)點M、N分別在CB、DC的延長線上時,若CN=CD=6,設(shè)BD與AM的延長線交于點P,交AN于Q,直接寫出AQ、AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC中,AB=,AC=,BC=6.
(1)如圖1,點M為AB的中點,在線段AC上取點N,使△AMN與△ABC相似,求線段MN的長;
(2)如圖2,是由100個邊長為1的小正方形組成的10×10的正方形網(wǎng)格,設(shè)頂點在這些小正方形頂點
的三角形為格點三角形.
①請你在所給的網(wǎng)格中畫出格點△A1B1C1與△ABC全等(畫出一個即可,不需證明);
②試直接寫出所給的網(wǎng)格中與△ABC相似且面積最大的格點三角形的個數(shù),并畫出其中一個(不需
證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠MON及其邊上一點A,以點A為圓心,AO長為半徑畫弧,分別交OM,ON于點B和C,再以點C為圓心,AC長為半徑畫弧,恰好經(jīng)過點B,錯誤的結(jié)論是( ).
A.B.∠OCB=90°C.∠MON=30°D.OC=2BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一科技小組進行了機器人行走性能試驗,在試驗場地有A、B、C三點順次在同一筆直的賽道上,甲、乙兩機器人分別從A、B兩點同時同向出發(fā),歷時7min同時到達C點,甲機器人前3分鐘以a m/min的速度行走,乙機器人始終以60m/min的速度行走,如圖是甲、乙兩機器人之間的距離y(m)與他們的行走時間x(min)之間的函數(shù)圖象,請結(jié)合圖象,回答下列問題:
(1)A、B兩點之間的距離是____m,A、C兩點之間的距離是____m,a=____m/min;
(2)求線段EF所在直線的函數(shù)解析式;
(3)設(shè)線段FG∥x軸.
①當(dāng)3≤x≤4時,甲機器人的速度為____m/min;
②直接寫出兩機器人出發(fā)多長時間相距28m.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知點、在直線上,且,于點,且,以為直徑在的左側(cè)作半圓,于,且,
(1)若半圓上有一點,則的最大值為__________,最小值為__________;
(2)向右沿直線平移得到;
①如圖2,若截半圓的弧的長為,求的度數(shù);
②當(dāng)半圓與的邊相切時,求平移距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(﹣1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:
①二次函數(shù)y=ax2+bx+c的最小值為﹣4a;
②若﹣1≤x2≤4,則0≤y2≤5a;
③若y2>y1,則x2>4;
④一元二次方程cx2+bx+a=0的兩個根為﹣1和
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com