【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
【答案】C
【解析】分別求得四個(gè)三角形三邊的長,再根據(jù)三角形三邊分別成比例的兩三角形相似來判定.解:∵①中的三角形的三邊分別是:2,,;
②中的三角形的三邊分別是:3,,;
③中的三角形的三邊分別是:2,2,2;
④中的三角形的三邊分別是:3,,4;
∵①與③中的三角形的三邊的比為:1:
∴①與③相似.
故選C.
“點(diǎn)睛”此題主要考查相似三角形的判定方法:(1)平行線法:平行于三角形的一邊的直線與其他兩邊相交,所構(gòu)成的三角形與原三角形相似;(2)三邊法:三組對應(yīng)邊的比相等的兩個(gè)三角形相似;(3)兩邊及其夾角法:兩組對應(yīng)邊的比相等且夾角對應(yīng)相等的兩個(gè)三角形相似;(4)兩角法:有兩組角對應(yīng)相等的兩個(gè)三角形相似.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)共同承擔(dān)一項(xiàng)筑路任務(wù),甲隊(duì)單獨(dú)施工完成此項(xiàng)任務(wù)比乙隊(duì)單獨(dú)施工完成此項(xiàng)任務(wù)多用10天,且甲隊(duì)單獨(dú)施工45天和乙隊(duì)單獨(dú)施工30天的工作量相同.
(1)甲、乙兩隊(duì)單獨(dú)完成此項(xiàng)任務(wù)各需多少天?
(2)若甲、乙兩隊(duì)共同工作了3天后,乙隊(duì)因設(shè)備檢修停止施工,由甲隊(duì)繼續(xù)施工,為了不影響工程進(jìn)度,甲隊(duì)的工作效率提高到原來的2倍,要使甲隊(duì)總的工作量不少于乙隊(duì)的工作量的2倍,那么甲隊(duì)至少再單獨(dú)施工多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,C是線段AE上一點(diǎn),△ABC、△CDE都是等邊三角形,AD與BC交于點(diǎn)M,BE與CD交于點(diǎn)N。
試說明:(1)AD=BE;(2)MN//AE。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,梯形ABCD中,AB//CD,且AB=2CD,E,F分別是AB,BC的中點(diǎn).
EF與BD相交于點(diǎn)M.
(1)求證:△EDM∽△FBM;
(2)若DB=9,求BM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)正常人的心跳平均每分70次,一天大約跳100800次,將100800用科學(xué)記數(shù)法表示為( 。
A.0.1008×106
B.1.008×106
C.1.008×105
D.10.08×104
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計(jì)了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點(diǎn)E處時(shí),可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時(shí),測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點(diǎn)A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結(jié)果精確到0.1m).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀新知:移項(xiàng)且合并同類項(xiàng)之后,只含有偶次項(xiàng)的四次方程稱作雙二次方程.其一般形式為ax4+bx2+c=0(a≠0),一般通過換元法解之,具體解法是設(shè) x2=y,則原四次方程化為一元二次方程:ay2+by+c=0,解出y之后代入x2=y,從而求出x的值.
例如解:4x4-8x2+3=0
解:設(shè)x2=y,則原方程可化為:4y2-8y+3=0
∵a=4,b=-8,c=3
∴b2-4ac=(-8)2-4×4×3=16>0
∴y==
∴y1=, y2=
∴當(dāng)y1=時(shí),x2=. ∴x1=,x2=-;
當(dāng)y1=時(shí),x2=. ∴x3=,x4=-.
小試牛刀:請你解雙二次方程:x4-2x2-8=0
歸納提高:
思考以上解題方法,試判斷雙二次方程的根的情況,下列說法正確的是____________(選出所有的正確答案)
①當(dāng)b2-4ac≥0時(shí),原方程一定有實(shí)數(shù)根;
②當(dāng)b2-4ac<0時(shí),原方程一定沒有實(shí)數(shù)根;
③當(dāng)b2-4ac≥0,并且換元之后的一元二次方程有兩個(gè)正實(shí)數(shù)根時(shí),原方程有4個(gè)實(shí)數(shù)根,換元之后的一元二次方程有一個(gè)正實(shí)數(shù)根一個(gè)負(fù)實(shí)數(shù)根時(shí),原方程有2個(gè)實(shí)數(shù)根;
④原方程無實(shí)數(shù)根時(shí),一定有b2-4ac<0.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com