【題目】小明想利用太陽光測量樓高,他帶著皮尺來到一棟樓下,發(fā)現(xiàn)對面墻上有這棟樓的影子,針對這種情況,他設(shè)計了一種測量方案,具體測量情況如下:如示意圖,小明邊移動邊觀察,發(fā)現(xiàn)站到點E處時,可以使自己落在墻上的影子與這棟樓落在墻上的影子重疊,且高度恰好相同.此時,測得小明落在墻上的影子高度CD=1.2m,CE=0.8m,CA=30m(點A、E、C在同一直線上).已知小明的身高EF是1.7m,請你幫小明求出樓高AB(結(jié)果精確到0.1m).
【答案】20.0米.
【解析】試題分析:此題屬于實際應(yīng)用問題,解題的關(guān)鍵是將實際問題轉(zhuǎn)化為數(shù)學(xué)問題進(jìn)行解答;解題時要注意構(gòu)造相似三角形,利用相似三角形的性質(zhì)解題.
試題解析:如圖:過點D作DG⊥AB,分別交AB、EF于點G、H,∵AB∥CD,DG⊥AB,AB⊥AC,∴四邊形ACDG是矩形,∴EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,∵EF∥AB,∴,由題意,知FH=EF﹣EH=1.7﹣1.2=0.5,∴,解得,BG=18.75,∴AB=BG+AG=18.75+1.2=19.95≈20.0.∴樓高AB約為20.0米.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在大小為4×4的正方形網(wǎng)格中,是相似三角形的是( 。
A. ①和② B. ②和③ C. ①和③ D. ②和④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在如圖所示的網(wǎng)格中,線段AB和直線l如圖所示:
(1)借助圖中的網(wǎng)格,在圖1中作銳角△ABC,滿足以下要求:①C為格點(網(wǎng)格線交點);②AB=AC.
(2)在(1)的基礎(chǔ)上,請只用直尺(不含刻度)在圖(1)中找一點P,使得P到AB、AC的距離相等,且PA=PB.(友情提醒:請別忘了標(biāo)注字母!)
(3)在圖2中的直線l上找一點Q,使得△QAB的周長最小,并求出周長的最小值是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在△ABC中,∠C=90°,AC=6,BC=8,M是BC的中點,P為AB上的一個動點(不可以與A,B重合),并作∠MPD=90°,PD交BC(或BC的延長線)于點D
(1)記BP的長為x,△BPM的面積為y,求y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍。
(2)是否存在這樣的點P,使得△MPD與△ABC相似?若存在,請求出x的值;若不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明想知道旗桿的高度,他發(fā)現(xiàn)旗桿頂端的繩子垂到地面還多出1米,他把繩子的下端往外拉開5米后,發(fā)現(xiàn)下端剛好接觸地面,求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=﹣﹣x+4,
(1)用配方法確定它的頂點坐標(biāo)、對稱軸;
(2)x取何值時,y隨x增大而減?
(3)x取何值時,拋物線在x軸上方?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,“和諧號”高鐵列車的小桌板收起時近似看作與地面垂直,小桌板的支架底端與桌面頂端的距離OA = 75厘米.展開小桌板使桌面保持水平,此時CB⊥AO,∠AOB =∠ACB = 37°,且支架長OB與桌面寬BC的長度之和等于OA的長度.求小桌板桌面的寬度BC.(參考數(shù)據(jù)sin37° ≈ 0.6,cos37°≈ 0.8,tan37° ≈ 0.75)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com