【題目】關(guān)注數(shù)學(xué)文化:古希臘的幾何學(xué)家海倫在數(shù)學(xué)史上以解決幾何測(cè)量問(wèn)題而聞名.在他的著作《度量》一書(shū)中,給出了如下公式:若一個(gè)三角形的三邊長(zhǎng)分別為a,b,c,記p=,則三角形的面積S=(海倫公式).我國(guó)南宋時(shí)期數(shù)學(xué)家秦九韶曾提出利用三角形的三邊求面積的秦九韶公式:.海倫公式和秦九韶公式實(shí)質(zhì)上是同一個(gè)公式,所以我們一般也稱此公式為海倫-秦九韶公式.

若△ABC的三邊長(zhǎng)分別為5,6,7,△DEF的三邊長(zhǎng)分別為,,請(qǐng)選擇合適的公式分別求出△ABC和△DEF的面積.

【答案】SABC=6;SDEF=.

【解析】

因?yàn)槿切巍鰽BC的三邊長(zhǎng)都是整數(shù),所以代入海倫公式求面積,因?yàn)椤鱀EF的三邊長(zhǎng)為無(wú)理數(shù),它們的平方是整數(shù),所以代入秦九韶公式求面積.

因?yàn)椤鰽BC的三邊長(zhǎng)分別為5,6,7,

所以,

所以

因?yàn)椤鱀EF的三邊長(zhǎng)分別為,,

所以S△DEF==.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)EF在對(duì)角線BD上,,迎接AF,CE.

1)求證:;

2)試判斷四邊形AECF的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫(huà)的如意湖畔,是來(lái)鄭州觀光的游客留影的最佳景點(diǎn),學(xué)完了三角函數(shù)知識(shí)后,劉明和王華同學(xué)決定用自己學(xué)到的知識(shí)測(cè)量“大玉米”的高度他們制訂了測(cè)量方案,并利用課余時(shí)間完成了實(shí)地測(cè)量,測(cè)量項(xiàng)目及結(jié)果如下表

請(qǐng)你幫助該小組根據(jù)上表中的測(cè)量數(shù)據(jù),求出鄭州會(huì)展賓館的高度.

(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在中,分別為上一點(diǎn),且,,.

1)求證:

2)求證:;

3)若,將順時(shí)針旋轉(zhuǎn)至如圖2所示位置(不動(dòng)),連,取中點(diǎn),連,為射線上一點(diǎn),連,求的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD中,AB=8AD=6, 點(diǎn)E是邊CD上一個(gè)動(dòng)點(diǎn),連接AE,將AED沿直線AE翻折得AEF.

(1) 當(dāng)點(diǎn)C落在射線AF上時(shí),求DE的長(zhǎng);

(2)F為圓心,FB長(zhǎng)為半徑作圓F,當(dāng)AD與圓F相切時(shí),求cosFAB的值;

(3)PAB邊上一點(diǎn),當(dāng)邊CD上有且僅有一點(diǎn)Q滿∠BQP=45°,直接寫(xiě)出線段BP長(zhǎng)的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,分別切的三邊、于點(diǎn)、、,若,,

1)求的長(zhǎng);

2)求的半徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們知道:三角形的三條角平分線交于一點(diǎn),這個(gè)點(diǎn)稱為三角形的內(nèi)心(三角形內(nèi)切圓的圓心).現(xiàn)在規(guī)定:如果四邊形的四個(gè)角的角平分線交于一點(diǎn),我們把這個(gè)點(diǎn)也成為四邊形的內(nèi)心”.

(1)試舉出一個(gè)有內(nèi)心的四邊形.

(2)如圖1,已知點(diǎn)O是四邊形ABCD的內(nèi)心,求證:AB+CD=AD+BC.

(3)如圖2,Rt△ABC中,∠C=90°.O△ABC的內(nèi)心.若直線DE截邊AC、BC于點(diǎn)D.E,且O仍然是四邊形ABED的內(nèi)心.這樣的直線DE可畫(huà)多少條?請(qǐng)?jiān)趫D2中畫(huà)出一條符合條件的直線DE,并簡(jiǎn)單說(shuō)明作法.

(4)問(wèn)題(3)中,若AC=3,BC=4,滿足條件的一條直線DE∥AB,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是  

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,等邊三角形中,,點(diǎn)D延長(zhǎng)線上一點(diǎn),且,點(diǎn)E直線上,當(dāng)時(shí),的長(zhǎng)為_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案