【題目】如圖1,在中,分別為上一點,且,,.
(1)求證:;
(2)求證:;
(3)若,將繞順時針旋轉至如圖2所示位置(不動),連,取中點,連,為射線上一點,連,求的最小值.
【答案】(1)見解析;(2)見解析;(3)
【解析】
(1)由可得,由可得,可證
(2)延長至,使,連,在上截取,連,可證:可得,可證:可得,故即可證
(3)延長至使,連,,延長,交于,交于
可證:,故,,,由(2)知,由于故可得故,故.故可證,可得,可證為正三角形,故,由于故即可求出的最小值.
(1)證明:
又
(2)證明:延長至,使,連,在上截取,連.
∵BD=CD,∠BDF=∠CDS
∴
∵∠TCD =∠EBC
∴∠TCD=∠DCS
∵TC=SC,CD=CD
∴
.
∴
(3)解:延長至使,
連,,延長,交于,交于
∵M是AC的中點
∴AM=MC
∵∠CME=∠SMA,EM=MS
∴,
,,,
由(2)知
.
在和中
為正三角形,
的最小值為
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,BD是對角線,AG∥DB交CB的延長線于G.
(1)求證:△ADE≌△CBF;
(2)若四邊形 BEDF是菱形,則四邊形AGBD是什么特殊四邊形?并證明你的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里裝有5個分別寫有數(shù)字0,1,2,3,4的小球,它們除數(shù)字不同外其余全部相同.現(xiàn)從盒子里隨機摸出一個小球(不放回),設該小球上的數(shù)字為m,再從盒子中摸出一個小球,設該小球上的數(shù)字為n,點P的坐標為,則點P落在拋物線與x軸所圍成的區(qū)域內(含邊界)的概率是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,在矩形中,,對角線,相交于點,動點由點出發(fā),沿向點運動.設點的運動路程為,的面積為,與的函數(shù)關系圖象如圖②所示,則邊的長為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在中,,點為邊的中點,點在上,連接并延長到點,使,點在線段上,且.
(1)如圖1,連接,當時,求證:
(2)如圖2,當時,則線段之間的數(shù)量關系為 ;
(3)在(2)的條件下,延長到,使,連接,若,,求證:,并求的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的切線,切點為B,OA交⊙O于點C,且AC=OC.
(1)求弧BC的度數(shù);
(2)設⊙O的半徑為5,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】關注數(shù)學文化:古希臘的幾何學家海倫在數(shù)學史上以解決幾何測量問題而聞名.在他的著作《度量》一書中,給出了如下公式:若一個三角形的三邊長分別為a,b,c,記p=,則三角形的面積S=(海倫公式).我國南宋時期數(shù)學家秦九韶曾提出利用三角形的三邊求面積的秦九韶公式:.海倫公式和秦九韶公式實質上是同一個公式,所以我們一般也稱此公式為海倫-秦九韶公式.
若△ABC的三邊長分別為5,6,7,△DEF的三邊長分別為,,,請選擇合適的公式分別求出△ABC和△DEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一袋中裝有形狀大小都相同的四個小球,每個小球上各標有一個數(shù)字,分別是1,4,7,8.現(xiàn)規(guī)定從袋中任取一個小球,對應的數(shù)字作為一個兩位數(shù)的個位數(shù);然后將小球放回袋中并攪拌均勻,再任取一個小球,對應的數(shù)字作為這個兩位數(shù)的十位數(shù).
(1)寫出按上述規(guī)定得到所有可能的兩位數(shù);
(2)從這些兩位數(shù)中任取一個,求其算術平方根大于4且小于7的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對鈍角α,定義三角函數(shù)值如下:
sinα=sin(180°-α),cosα=-cos(180°-α).
(1)求sin120°,cos120°的值;
(2)若一個鈍角三角形的三個內角比是1:1:4,點A,B是這個三角形的兩個頂點,sinA,cosB是方程4x2-mx-1=0的兩個不相等的實數(shù)根,求m的值及∠A和∠B的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com