【題目】如圖,在矩形中,,對角線,相交于點,動點由點出發(fā),沿向點運動.設點的運動路程為,的面積為的函數(shù)關系圖象如圖所示,則邊的長為__________.

【答案】4

【解析】

P點在AB上運動時,AOP面積逐漸增大,當P點到達B點時,結合圖象可得AOP面積最大為3,得到ABBC的積為12;當P點在BC上運動時,AOP面積逐漸減小,當P點到達C點時,AOP面積為0,此時結合圖象可知P點運動路徑長為7,得到ABBC的和為7,構造關于AB的一元二方程可求解.

解:當P點在AB上運動時,AOP面積逐漸增大,當P點到達B點時,AOP面積最大為3

ABBC=3,即ABBC=12

P點在BC上運動時,AOP面積逐漸減小,當P點到達C點時,AOP面積為0,此時結合圖象可知P點運動路徑長為7

AB+BC=7

BC=7-AB,代入ABBC=12,得AB2-7AB+12=0,解得AB=43,

因為ABAD,即ABBC,

所以AB=3,BC=4

AD=BC=4

故答案為:4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC是等腰直角三角形,∠A90°,D是腰AC上的一個動點,過點CCEBD,交BD的延長線于點E,如圖①.

1)求證:ADCDBDDE;

2)若BD是邊AC的中線,如圖②,求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是∠AOB內任意一點,且∠AOB=40°,點M和點N分別是射線OA和射線OB上的動點,當△PMN周長取最小值時,則∠MPN的度數(shù)為( )

A. 140° B. 100° C. 50° D. 40°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在的正方形網(wǎng)格中,每個小正方形的邊長為1,建立如圖所示的坐標系.的三個頂點均在格點上.

1)若將沿x軸對折得到,則的坐標為_______;

2)以點B為位似中心,將各邊放大為原來的2倍,得到,請在這個網(wǎng)格中畫出;

3)在(2)的條件下,若小明蒙上眼睛在一定距離外,向的正方形網(wǎng)格內擲小石子,則剛好擲入的概率是多少?(未擲入圖形內則不計次數(shù),重擲一次)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】被譽為“中原第一高樓”的鄭州會展賓館(俗稱“大玉米”)坐落在風景如畫的如意湖畔,是來鄭州觀光的游客留影的最佳景點,學完了三角函數(shù)知識后,劉明和王華同學決定用自己學到的知識測量“大玉米”的高度他們制訂了測量方案,并利用課余時間完成了實地測量,測量項目及結果如下表

請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會展賓館的高度.

(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,DEAC,AEBD

1)求證:四邊形AODE是矩形;

2)若AB2,AC2,求四邊形AODE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在中,分別為上一點,且,,.

1)求證:;

2)求證:;

3)若,將順時針旋轉至如圖2所示位置(不動),連,取中點,連,為射線上一點,連,求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,分別切的三邊、于點、、,若,,

1)求的長;

2)求的半徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知不等臂蹺蹺板AB長為3,蹺蹺板AB的支撐點O到地面上的點H的距高OH=0.6米。當蹺蹺板AB的一個端點A碰到地面時,AB與地面上的直線AH的夾角∠OAH的度數(shù)為30°.

1)當AB的另一個端點B碰到地面時(如右圖),蹺蹺板AB與直線BH的夾角∠ABH的正弦值是多少?

2)當AB的另一個端點B碰到地面時(如右圖),A到直線BH的距離是多少米?

查看答案和解析>>

同步練習冊答案