【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣ax+b的圖象與反比例函數(shù)的圖象相交于點A(﹣4,﹣2),B(m,4),與y軸相交于點C.
(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求點C的坐標(biāo)及△AOB的面積.
【答案】(1),y=x+2;(2)C(0,2),6.
【解析】
試題分析:(1)由點A的坐標(biāo)利用反比例函數(shù)圖象上點的坐標(biāo)特征即可求出k值,從而得出反比例函數(shù)表達(dá)式,再由點B的坐標(biāo)和反比例函數(shù)表達(dá)式即可求出m值,結(jié)合點A、B的坐標(biāo)利用待定系數(shù)法即可求出一次函數(shù)表達(dá)式;
(2)令一次函數(shù)表達(dá)式中x=0求出y值即可得出點C的坐標(biāo),利用分解圖形求面積法結(jié)合點A、B的坐標(biāo)即可得出結(jié)論.
試題解析:(1)∵點A(﹣4,﹣2)在反比例函數(shù)的圖象上,∴k=﹣4×(﹣2)=8,∴反比例函數(shù)的表達(dá)式為;
∵點B(m,4)在反比例函數(shù)的圖象上,∴4m=8,解得:m=2,∴點B(2,4).
將點A(﹣4,﹣2)、B(2,4)代入y=﹣ax+b中,得:,解得:,∴一次函數(shù)的表達(dá)式為y=x+2.
(2)令y=x+2中x=0,則y=2,∴點C的坐標(biāo)為(0,2),∴S△AOB=OC×(xB﹣xA)=×2×[2﹣(﹣4)]=6.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面的統(tǒng)計圖反映了我國出租車(巡游出租車和網(wǎng)約出租車)客運量結(jié)構(gòu)變化.
(以上數(shù)據(jù)摘自《中國共享經(jīng)濟(jì)發(fā)展年度報告(2019)》)
根據(jù)統(tǒng)計圖提供的信息,下列推斷合理的是( )
A.2018年與2017年相比,我國網(wǎng)約出租車客運量增加了20%以上
B.2018年,我國巡游出租車客運量占出租車客運總量的比例不足60%
C.2015年至2018年,我國出租車客運的總量一直未發(fā)生變化
D.2015年至2018年,我國巡游出租車客運量占出租車客運總量的比例逐年增加
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=2,BC=4,CD是△ABC的中線,E是邊BC上一動點,將△BED沿ED折疊,點B落在點F處,EF交線段CD于點G,當(dāng)△DFG是直角三角形時,則CE=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 鄭州某商場在“六一”兒童節(jié)購進(jìn)一批兒童智力玩具.已知成批購進(jìn)時單價20元,調(diào)查發(fā)現(xiàn):該玩具的月銷售量y(個)與銷售單價x(元)之間滿足一次函數(shù)關(guān)系,下表是月銷售量、銷售單價的幾組對應(yīng)關(guān)系:
月銷售單價x/元 | 30 | 35 | 40 | 45 |
月銷售量y/個 | 230 | 180 | 130 | m |
(1)求y與x的函數(shù)關(guān)系式;
(2)根據(jù)以上信息填空:
①m=______;
②當(dāng)銷售單價x=______元時,月銷售利潤最大,最大利潤是______元;
(3)根據(jù)物價部門規(guī)定,每件玩具售價不能高于40元,若月銷售利潤不低于2520元,試求銷售單價x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.
已知是比例三角形,,,請直接寫出所有滿足條件的AC的長;
如圖1,在四邊形ABCD中,,對角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點,其中A點坐標(biāo)為(﹣1,0),點C(0,5),另拋物線經(jīng)過點(1,8),M為它的頂點.
(1)求拋物線的解析式;
(2)求△MCB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線經(jīng)過點A,作AB⊥x軸于點B,將△ABO繞點B逆時針旋轉(zhuǎn)60°,得到△CBD,若點B的坐標(biāo)為(4,0),則點C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O半徑為3,直徑AB垂直弦CD于E,過點A作∠DAF=∠DAB,過點D作AF的垂線,垂足為點F,交AB的延長線于點P,連接CO并延長與圓交于點G,連接EG.
(1)求證:DF是⊙O的切線;
(2)若AD=DP,求的長度;
(3)若tanC,求線段EG的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com