【題目】RtABC中,∠ACB=90°AC=3,BC=4.以點(diǎn)C為圓心,r為半徑的圓與邊AB(邊AB為線段)僅有一個(gè)公共點(diǎn),則r的值為( 。

A.rB.r=3r=4C.r≤4 D.r=3r≤4

【答案】D

【解析】

此題注意兩種情況:(1)圓與AB相切時(shí);(2)點(diǎn)A在圓內(nèi)部,點(diǎn)B在圓上或圓外時(shí).根據(jù)勾股定理以及直角三角形的面積計(jì)算出其斜邊上的高,再根據(jù)位置關(guān)系與數(shù)量之間的聯(lián)系進(jìn)行求解.

如圖,根據(jù)勾股定理求得AB=5


BCAC,
∴以C為圓心,r為半徑所作的圓與斜邊AB只有一個(gè)公共點(diǎn).
分兩種情況:
1)圓與AB相切時(shí),即r=CD=3×4÷5=;
2)點(diǎn)A在圓內(nèi)部,點(diǎn)B在圓上或圓外時(shí),此時(shí)ACr≤BC,即3r≤4
r3r≤4
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】綜合與探究

如圖,拋物線的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,且與軸的另一交點(diǎn)為(,0).

(1)求拋物線的解析式;

(2)若直線與拋物線相交于點(diǎn)A和點(diǎn)B(點(diǎn)A在第二象限),設(shè)點(diǎn)A′是點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn),連接A′B,試判斷ΔAA′B的形狀,并說(shuō)明理由;

(3)在問(wèn)題(2)的基礎(chǔ)上,探究:平面內(nèi)是否存在點(diǎn)P,使得以點(diǎn)AB,A′,P為頂點(diǎn)的四邊形是菱形?若存在直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在中,,,是斜邊的中點(diǎn),以為頂點(diǎn),作,的兩邊交邊于點(diǎn)、(點(diǎn)不與點(diǎn)重合)

(1)當(dāng)時(shí),求的長(zhǎng)度;

(2)當(dāng)繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),設(shè),,求關(guān)于的函數(shù)解析式,并寫(xiě)出的取值范圍.

(3)聯(lián)結(jié),是否存在點(diǎn),使△與△相似?若存在,請(qǐng)求出此時(shí)的長(zhǎng)度;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在甲、乙兩名同學(xué)中選拔一人參加英語(yǔ)口語(yǔ)聽(tīng)力大賽,在相同的測(cè)試條件下,兩人5次測(cè)試成績(jī)(單位:分)如下:

甲:79,81,82,8583 乙:88,79,90,81,72

1)求甲、乙兩名同學(xué)測(cè)試成績(jī)的方差;

2)請(qǐng)你選擇一個(gè)角度來(lái)判斷選拔誰(shuí)參加比賽更合適.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB10m,BC40m,∠C90°,點(diǎn)P從點(diǎn)A開(kāi)始沿邊AC邊向點(diǎn)C2m/s的速度勻速移動(dòng),同時(shí)另一點(diǎn)QC點(diǎn)開(kāi)始以3m/s的速度沿著邊CB勻速移動(dòng),幾秒時(shí),△PCQ的面積等于432m2?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=ax2+bx+3經(jīng)過(guò)點(diǎn)A3,0)和點(diǎn)B4,3).

1)求這條拋物線的函數(shù)表達(dá)式;

2)求該拋物線的頂點(diǎn)坐標(biāo);

3)在給定坐標(biāo)系內(nèi)畫(huà)出這條拋物線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程:

1)用開(kāi)平方法解方程:

2)用配方法解方程:x2 4x+1=0

3)用公式法解方程:3x2+52x+1=0

4)用因式分解法解方程:3x-52=25-x

5)解方程:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中的圖形M,N,給出如下定義:P為圖形M上任意一點(diǎn),Q為圖形N上任意一點(diǎn),如果P,Q兩點(diǎn)間的距離有最小值,那么稱這個(gè)最小值為圖形M,N間的“距離”,記作特別地,若圖形MN有公共點(diǎn),規(guī)定

如圖1,的半徑為2

點(diǎn),,則______,______

已知直線l的“距離”,求b的值.

已知點(diǎn),,的圓心為,半徑為,請(qǐng)直接寫(xiě)出m的取值范圍______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC,點(diǎn)PABC內(nèi)一點(diǎn),∠APB=∠BAC120°.若APBP4,則PC的最小值為(

A. 2B. C. D. 3

查看答案和解析>>

同步練習(xí)冊(cè)答案