【題目】如圖,在△ABC中,AB=10m,BC=40m,∠C=90°,點(diǎn)P從點(diǎn)A開始沿邊AC邊向點(diǎn)C以2m/s的速度勻速移動,同時另一點(diǎn)Q由C點(diǎn)開始以3m/s的速度沿著邊CB勻速移動,幾秒時,△PCQ的面積等于432m2?
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形OABC繞點(diǎn)O逆時針旋轉(zhuǎn)45°后得到正方形,依此方式,繞點(diǎn)O連續(xù)旋轉(zhuǎn)2018次得到正方形,如果點(diǎn)A的坐標(biāo)為(1,0),那么點(diǎn)的坐標(biāo)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知圓0的直徑AB垂直于弦CD于點(diǎn)E,CG是圓O的切線交AB的延長線于點(diǎn)G,連接CO并延長交AD于點(diǎn)F,且CFAD.
(1)試問:CG//AD嗎?說明理由:
(2)證明:點(diǎn)E為OB的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果一元二次方程滿足,那么我們稱這個方程為“鳳凰”方程.已知是“鳳凰”方程,且有兩個相等的實(shí)數(shù)根,則下列結(jié)論正確的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點(diǎn)在(﹣3,0和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①2a﹣b=0:②4ac﹣b2<0:③點(diǎn)(x1,y1),(x2,y2)在拋物線上若x1<x2,則y1<y2;④a+b+c<0.正確結(jié)論的個數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,AC=3,BC=4.以點(diǎn)C為圓心,r為半徑的圓與邊AB(邊AB為線段)僅有一個公共點(diǎn),則r的值為( 。
A.r≥B.r=3或r=4C.≤r≤4 D.r=或3<r≤4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ACB內(nèi)接于圓O,AB為直徑,CD⊥AB與點(diǎn)D,E為圓外一點(diǎn),EO⊥AB,與BC交于點(diǎn)G,與圓O交于點(diǎn)F,連接EC,且EG=EC.
(1)求證:EC是圓O的切線;
(2)當(dāng)∠ABC=22.5°時,連接CF.
①求證:AC=CF;
②若AD=1,求線段FG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某天貓店銷售某種規(guī)格學(xué)生軟式排球,成本為每個30元.以往銷售大數(shù)據(jù)分析表明:當(dāng)每只售價為40元時,平均每月售出600個;若售價每上漲1元,其月銷售量就減少20個,若售價每下降1元,其月銷售量就增加200個.
(1)若售價上漲m元,每月能售出 個排球(用m的代數(shù)式表示).
(2)為迎接“雙十一”,該天貓店在10月底備貨1300個該規(guī)格的排球,并決定整個11月份進(jìn)行降價促銷,問售價定為多少元時,能使11月份這種規(guī)格排球獲利恰好為8400元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,把矩形OCBA繞點(diǎn)C順時針旋轉(zhuǎn)α角,得到矩形FCDE,設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(6,0).
(1)當(dāng)α=45°時,求H點(diǎn)的坐標(biāo).
(2)當(dāng)α=60°時,ΔCBD是什么特殊的三角形?說明理由.
(3)當(dāng)AH=HC時,求直線HC的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com