【題目】如圖,在平面直角坐標系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點A(-3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(a,b,c為常數(shù),且a≠0)經過A、C兩點,并與x軸的正半軸交于點B.
(1)求m的值及拋物線的函數(shù)表達式;
(2)若P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標;
(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標;若不存在,請說明理由;
(4)在(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結果,如果不是請說明理由.
【答案】(1),y=x2+x+;(2)(1,3);(3)存在,5.2 ,7.2;(4)是.
【解析】
試題(1)首先求得m的值和直線的解析式,根據(jù)拋物線對稱性得到B點坐標,根據(jù)A、B點坐標利用交點式求得拋物線的解析式;
(2)確定何時△ACP的周長最小.利用軸對稱的性質和兩點之間線段最短的原理解決;確定P點坐標P(1,3),從而直線M1M2的解析式可以表示為y=kx+3-k;
(3)存在, 設Q(x,-x2+x+)①若C為直角頂點, 則由△ACO相似于△CQE,得x=5.2,②若A為直角頂點,則由△ACO相似于△AQE,得x=8.2從而求出Q點坐標.
(4)利用兩點間的距離公式,分別求得線段M1M2、M1P和M2P的長度,相互比較即可得到結論:為定值.
試題解析:(1)∵y=x+m經過點(-3,0),
∴0=+m,解得m=,
∴直線解析式為y=x+,C(0,).
∵拋物線y=ax2+bx+c對稱軸為x=1,且與x軸交于A(-3,0),∴另一交點為B(5,0),
設拋物線解析式為y=a(x+3)(x-5),
∵拋物線經過C(0,),
∴=a3(-5),解得a=,
∴拋物線解析式為y=x2+x+;
(2)要使△ACP的周長最小,只需AP+CP最小即可.如圖2,
連接BC交x=1于P點,因為點A、B關于x=1對稱,根據(jù)軸對稱性質以及兩點之間線段最短,可知此時AP+CP最小(AP+CP最小值為線段BC的長度).
∵B(5,0),C(0,),
∴直線BC解析式為y=x+,
∵xP=1,∴yP=3,即P(1,3).
(3) (3)存在 設Q(x, x2+x+)
①若C為直角頂點, 則由△ACO相似于△CQE,得x=5.2
②若A為直角頂點,則由△ACO相似于△AQE,得x=8.2
∴Q的橫坐標為5.2 ,7.2
(4)令經過點P(1,3)的直線為y=kx+b,則k+b=3,即b=3-k,
則直線的解析式是:y=kx+3-k,
∵y=kx+3-k,y=x2+x+,
聯(lián)立化簡得:x2+(4k-2)x-4k-3=0,
∴x1+x2=2-4k,x1x2=-4k-3.
∵y1=kx1+3-k,y2=kx2+3-k,∴y1-y2=k(x1-x2).
根據(jù)兩點間距離公式得到:
∴=4(1+k2).
又
;
同理
∴
=4(1+k2).
∴M1PM2P=M1M2,
∴為定值.
考點: 二次函數(shù)綜合題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),是兩個全等的直角三角形(直角邊分別為a,b,斜邊為c)
(1)用這樣的兩個三角形構造成如圖(2)的圖形,利用這個圖形,證明:a2+b2=c2;
(2)用這樣的兩個三角形構造圖3的圖形,你能利用這個圖形證明出題(1)的結論嗎?如果能,請寫出證明過程;
(3)當a=3,b=4時,將其中一個直角三角形放入平面直角坐標系中,使直角頂點與原點重合,兩直角邊a,b分別與x軸、y軸重合(如圖4中Rt△AOB的位置).點C為線段OA上一點,將△ABC沿著直線BC翻折,點A恰好落在x軸上的D處.
①請寫出C、D兩點的坐標;
②若△CMD為等腰三角形,點M在x軸上,請直接寫出符合條件的所有點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B在半徑為1的⊙O上,∠AOB=60°,延長OB至C,過點C作直線OA的垂線記為l,則下列說法正確的是( )
A. 當BC等于0.5時,l與⊙O相離
B. 當BC等于2時,l與⊙O相切
C. 當BC等于1時,l與⊙O相交
D. 當BC不為1時,l與⊙O不相切
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,圓M經過原點O,且與x軸、y軸分別相交于A(﹣8,0),B(0,﹣6)兩點.
(1)求出直線AB的函數(shù)解析式;
(2)若有一拋物線的對稱軸平行于y軸且經過點M,頂點C在圓M上,開口向下,且經過點B,求此拋物線的函數(shù)解析式;
(3)設(2)中的拋物線交x軸于D、E兩點,在拋物線上是否存在點P,使得S△PDE=S△ABC?若存在,請求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知和均是等邊三角形,點在同一條直線上,與交于點,與交于點,與交于點,連接,則下列結論:①;②;③﹔④,其中正確結論有_________個.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,四邊形ABCD是矩形,AD∥x軸,A(-3,),AB=1,AD=2,將矩形ABCD向右平移m個單位,使點A,C恰好同時落在反比例函數(shù)y=的圖象上,得矩形A′B′C′D′,則反比例函數(shù)的解析式為______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,且關于x的一元二次方程ax2+bx+c﹣m=0沒有實數(shù)根,有下列結論:①b2﹣4ac>0;②abc<0;③m>2;④當x>0時,y隨x的增大而減小.正確結論的個數(shù)是( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊的邊長為,點從點出發(fā),以秒的速度由向勻速運動,點從點出發(fā),以秒的速度由向勻速運動,、交于點,當點到達點時,、兩點停止運動,設、兩點運動的時間為秒,若時,則的值是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com