【題目】如圖,等邊的邊長為,點從點出發(fā),以秒的速度由勻速運(yùn)動,點從點出發(fā),以秒的速度由勻速運(yùn)動,、交于點,當(dāng)點到達(dá)點時,、兩點停止運(yùn)動,設(shè)兩點運(yùn)動的時間為秒,若時,則的值是(  )

A.B.C.D.

【答案】C

【解析】

由等邊三角形性質(zhì)可得:ACBCAB8cm,∠BAC=∠ABC=∠C60°,根據(jù)題意可得CPtcm,CQ2rcm,進(jìn)而可得BP(8-t)cmAQ(8-2t)cm,根據(jù)三角形外角性質(zhì)可得∠ABQ=∠CAP,即可證明△ABQ≌△CAP(ASA),即可求得的值.

∵△ABC是等邊三角形,

ACBCAB8cm,∠BAC=∠ABC=∠C60°,

由題意得,

,

∴∠ABQ=∠CAP

在△ABQ和△CAP中,

,

解得.

故答案為C.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+m (m為常數(shù))的圖像與x軸交于點A(3,0),與y軸交于點C.以直線x=1為對稱軸的拋物線y=ax2+bx+c(ab,c為常數(shù),且a0)經(jīng)過AC兩點,并與x軸的正半軸交于點B

(1)m的值及拋物線的函數(shù)表達(dá)式;

(2)P是拋物線對稱軸上一動點,△ACP周長最小時,求出P的坐標(biāo);

(3)是否存在拋物在線一動點Q,使得△ACQ是以AC為直角邊的直角三角形?若存在,求出點Q的橫坐標(biāo);若不存在,請說明理由;

(4)(2)的條件下過點P任意作一條與y軸不平行的直線交拋物線于M1(x1,y1),M2(x2,y2)兩點,試問是否為定值,如果是,請直接寫出結(jié)果,如果不是請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DEAC于點E,且 .下列結(jié)論: ①△ADE∽△ACD;當(dāng)BD=6時,△ABD△DCE全等;③△DCE為直角三角形時,BD8;④CD2=CECA.其中正確的結(jié)論是________(把你認(rèn)為正確結(jié)論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,平分,連接,,

1)求的度數(shù):

2)如圖2,連接,,連接,求證:;

3)如圖3,在(2)的條件下,點的中點,連接于點,若,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若∠A=15°,AB=BC=CD=DE=EF,則∠DEF等于__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的方格紙中,有一個以格點為頂點的ABC

1ABC的形狀是 

2)利用網(wǎng)格線畫ABC,使它與ABC關(guān)于直線l對稱.

3)在直線l上求作點P使AP+CP的值最小,則AP+CP的最小值= 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊三角形ABC的邊長為4,ADBC邊上的中線,FAD邊上的動點EAC邊上一點AE2,當(dāng)EFCF取得最小值時,∠ECF的度數(shù)為( )

A. 20° B. 25° C. 30° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,①四邊形ABCD是平行四邊形,線段EF分別交AD、AC、BC于點E、O、F,②EF⊥AC,③AO=CO.

(1)求證:四邊形AFCE是平行四邊形;

(2)在本題①②③三個已知條件中,去掉一個條件,(1)的結(jié)論依然成立,這個條件是 (直接寫出這個條件的序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+ca≠0)圖象的一部分,x=﹣1是對稱軸,有下列判斷:b﹣2a=0;4a﹣2b+c0a﹣b+c=﹣9a;若(﹣3y1),(y2)是拋物線上兩點,則y1y2,其中正確的是( )

A. ①②③ B. ①③④ C. ①②④ D. ②③④

查看答案和解析>>

同步練習(xí)冊答案