【題目】如圖,已知拋物線經(jīng)過點(diǎn)A(3,1)與點(diǎn)B(0,4).
(1)求該拋物線的解析式及頂點(diǎn)坐標(biāo);
(2)在第三象限內(nèi)的拋物線上有一點(diǎn)P,使得PA⊥AB,求點(diǎn)P的坐標(biāo);
(3)若點(diǎn)C(,)在該拋物線上,當(dāng)≤≤3時(shí),1≤≤5,請(qǐng)確定的取值范圍.
【答案】(1) , 頂點(diǎn)坐標(biāo)為(1,5); (2)點(diǎn)P的坐標(biāo)為(-2,-4); (3) 的取值范圍是:-1≤≤1.
【解析】
(1)將代入,解關(guān)于b、c的二元一次方程組,得到解析式進(jìn)而求出頂點(diǎn)坐標(biāo);
(2)分別過B與點(diǎn)P作軸的平行線BD、PE,過點(diǎn)A作軸的垂線交BD于D、交PE于點(diǎn)E,證出AE=PE,設(shè)點(diǎn)P的坐標(biāo)為,分別用含m的代數(shù)式表示出AE和PE的長(zhǎng),進(jìn)而求出點(diǎn)P的坐標(biāo);
(3)根據(jù)題意,分別求出q的最大值與最小值,從而確定q的取值范圍.
(1)將代入得
解得
∴,
∴所求的拋物線的解析式為:, 頂點(diǎn)坐標(biāo)為(1,5)
(2)如圖,分別過B與點(diǎn)P作軸的平行線BD、PE,過點(diǎn)A作軸的垂線交BD于D、交PE于點(diǎn)E
∵PA⊥AB
∴
∴∠DAB+∠PAE=90°.
由A(3,1)、B(0,4)知BD=AD=3
∴∠DAB=45°
∴∠PAE=90°-∠DAB=90°-45°=45°
∴∠PAE=∠APE=45°
∴AE=PE
設(shè)點(diǎn)P的坐標(biāo)為則
AE=
PE=
∴
解得:或(點(diǎn)P在第三象限,不合題意,舍去)
∴時(shí),
∴點(diǎn)P的坐標(biāo)為(-2,-4).
(3)∵1≤n≤5且拋物線的頂點(diǎn)為(1,5)
∴區(qū)間包含頂點(diǎn)
∴的最大值為1
在中,當(dāng)時(shí),或者
∴的最小值為-1
∴的取值范圍是:-1≤≤1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半徑為2,圓心角為60°,則圖中陰影部分的面積是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】教材呈現(xiàn):下圖是華師版八年級(jí)上冊(cè)數(shù)學(xué)教材第94頁的部分內(nèi)容.
線段垂直平分線
我們已知知道線段是軸對(duì)稱圖形,線段的垂直一部分線是線段的對(duì)稱軸,如圖直線是線段的垂直平分線,是上任一點(diǎn),連結(jié)、,將線段與直線對(duì)稱,我們發(fā)現(xiàn)與完全重合,由此都有:線段垂直平分線的性質(zhì)定理,線段垂直平分線上的點(diǎn)到線段的距離相等.
已知:如圖,,垂足為點(diǎn),,點(diǎn)是直線上的任意一點(diǎn).
求證:.
圖中的兩個(gè)直角三角形和,只要證明這兩個(gè)三角形全等,便可證明(請(qǐng)寫出完整的證明過程)
請(qǐng)根據(jù)教材中的分析,結(jié)合圖①,寫出“線段垂直平分線的性質(zhì)定理”完整的證明過程,定理應(yīng)用.
(1)如圖②,在中,直線、、分別是邊、、的垂直平分線.
求證:直線、、交于點(diǎn).
(2)如圖③,在中,,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn),若,,則的長(zhǎng)為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織全校學(xué)生進(jìn)行了一次“社會(huì)主義核心價(jià)值觀”知識(shí)競(jìng)賽,賽后隨機(jī)抽取了各年級(jí)部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì),制作如下頻數(shù)分布表和頻數(shù)分布直方圖.請(qǐng)根據(jù)圖表中提供的信息,解答下列問題:
分?jǐn)?shù)段(表示分?jǐn)?shù)) | 頻數(shù) | 頻率 |
4 | 0.1 | |
8 | ||
0.3 | ||
10 | 0.25 | |
6 | 0.15 |
(1)請(qǐng)求出該校隨機(jī)抽取了____學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì);
(2)表中____,____,并補(bǔ)全直方圖;
(3)若用扇形統(tǒng)計(jì)圖描述此成績(jī)統(tǒng)計(jì)分布情況,則分?jǐn)?shù)段對(duì)應(yīng)扇形的圓心角度數(shù)是___;
(4)若該校共有學(xué)生8000人,請(qǐng)估計(jì)該校分?jǐn)?shù)在的學(xué)生有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖場(chǎng)為了響應(yīng)黨中央的扶貧政策,今年起采用“場(chǎng)內(nèi)+農(nóng)戶”養(yǎng)殖模式,同時(shí)加強(qiáng)對(duì)蛋雞的科學(xué)管理,蛋雞的產(chǎn)蛋率不斷提高,三月份和五月份的產(chǎn)蛋量分別是2.5萬kg與3.6萬kg,現(xiàn)假定該養(yǎng)殖場(chǎng)蛋雞產(chǎn)蛋量的月增長(zhǎng)率相同.
(1)求該養(yǎng)殖場(chǎng)蛋雞產(chǎn)蛋量的月平均增長(zhǎng)率;
(2)假定當(dāng)月產(chǎn)的雞蛋當(dāng)月在各銷售點(diǎn)全部銷售出去,且每個(gè)銷售點(diǎn)每月平均銷售量最多為0.32萬kg.如果要完成六月份的雞蛋銷售任務(wù),那么該養(yǎng)殖場(chǎng)在五月份已有的銷售點(diǎn)的基礎(chǔ)上至少再增加多少個(gè)銷售點(diǎn)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E ,G是弧AC上的點(diǎn),AG,DC延長(zhǎng)線交于點(diǎn)F.
(1)求證:∠FGC=∠AGD.
(2)若BE=2,CD=8,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一種推磨工具模型,圖2是它的示意圖,已知AB⊥PQ,AP=AQ=3dm,AB=12dm,點(diǎn)A在中軸線l上運(yùn)動(dòng),點(diǎn)B在以O為圓心,OB長(zhǎng)為半徑的圓上運(yùn)動(dòng),且OB=4dm.
(1)如圖3,當(dāng)點(diǎn)B按逆時(shí)針方向運(yùn)動(dòng)到B′時(shí),A′B′與⊙O相切,則AA′=__dm.
(2)在點(diǎn)B的運(yùn)動(dòng)過程中,點(diǎn)P與點(diǎn)O之間的最短距離為__dm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線經(jīng)過點(diǎn)(﹣2,0),且對(duì)稱軸為直線x=1,其部分圖象如圖所示.對(duì)于此拋物線有如下四個(gè)結(jié)論:
①;
②>;
③若n>m>0,則時(shí)的函數(shù)值小于時(shí)的函數(shù)值;
④點(diǎn)(,0)一定在此拋物線上.
其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)B.3個(gè)
C.2個(gè)D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某辦公樓AB的右邊有一建筑物CD,在建設(shè)物CD離地面2米高的點(diǎn)E處觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角=,在離建設(shè)物CD 25米遠(yuǎn)的F點(diǎn)觀測(cè)辦公樓頂A點(diǎn),測(cè)得的仰角=(B,F,C在一條直線上).
(1)求辦公樓AB的高度;
(2)若要在A,E之間掛一些彩旗,請(qǐng)你求出A,E之間的距離.(參考數(shù)據(jù):)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com