精英家教網 > 初中數學 > 題目詳情

【題目】1是一種推磨工具模型,圖2是它的示意圖,已知ABPQAPAQ3dm,AB12dm,點A在中軸線l上運動,點B在以O為圓心,OB長為半徑的圓上運動,且OB4dm

1)如圖3,當點B按逆時針方向運動到B′時,AB′與O相切,則AA′=__dm

2)在點B的運動過程中,點P與點O之間的最短距離為__dm

【答案】164 34

【解析】

1)根據AAOAOA′=AB+OBOA,即可求解;

2)當B、OP三點共線時,OP的距離最短,即可求解.

解:(1AAOAOA′=AB+OBOA12+416164,

故答案為:(164);

2)當B、O、P三點共線時,OP的距離最短,

OPBPOB-434dm),

故答案為:(34).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為全面貫徹黨的教育方針,堅持健康第一的教育理念,促進學生健康成長,提高體質健康水平,成都市調整體育中考實施方案:分值增加至60,男1000米(女800米)必考,足球、籃球、排球三選一”…,從2019年秋季新入學的七年級起開始實施.某中學為了解七年級學生對三大球類運動的喜愛情況,從七年級學生中隨機抽取部分學生進行調查問卷,通過分析整理繪制了如下兩幅統(tǒng)計圖.請根據兩幅統(tǒng)計圖中的信息回答下列問題:

1)求參與調查的學生中,喜愛排球運動的學生人數,并補全條形圖;

2)若該中學七年級共有400名學生,請你估計該中學七年級學生中喜愛籃球運動的學生有多少名?

3)若從喜愛足球運動的2名男生和2名女生中隨機抽取2名學生,確定為該校足球運動員的重點培養(yǎng)對象,請用列表法或畫樹狀圖的方法求抽取的兩名學生為一名男生和一名女生的概率.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖甲,拋物線yax2+bx1經過A(﹣1,0),B2,0)兩點,交y軸于點C

1)求拋物線的表達式和直線BC的表達式.

2)如圖乙,點P為在第四象限內拋物線上的一個動點,過點Px軸的垂線PE交直線BC于點D

在點P運動過程中,四邊形ACPB的面積是否存在最大值?若存在,求出這個最大值;若不存在,說明理由.

是否存在點P使得以點OC,D為頂點的三角形是等腰三角形?若存在,求出滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線經過點A(3,1)與點B(0,4)

(1)求該拋物線的解析式及頂點坐標;

(2)在第三象限內的拋物線上有一點P,使得PAAB,求點P的坐標;

(3)若點C()在該拋物線上,當3時,15,請確定的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,E是邊AD上的一點,將△CDE沿CE折疊得到△CFE,點F恰好落在邊AB上.

1)證明:△AEF∽△BFC

2)若AB=,BC=1,作線段CE的中垂線,交AB于點P,交CD于點Q,連結PE,PC

①求線段DQ的長.

②試判斷△PCE的形狀,并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,矩形ABCD中,AB8,BC6,點EF分別為AB,AD邊上任意一點,現將△AEF沿直線EF對折,點A對應點為點G

1)如圖2,當EFBD,且點G落在對角線BD上時,求DG的長;

2)如圖3,連接DG,當EFBD且△DFG是直角三角形時,求AE的值;

3)當AE2AF時,FG的延長線交△BCD的邊于點H,是否存在一點H,使得以E,H,G為頂點的三角形與△AEF相似,若存在,請求出AE的值;若不存在,請說明理由

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD中,EAD的中點,以E為頂點作BEF=∠EBCEFCD于點F

1)求tan∠BEF;

2)求DFCF的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知⊙O是△ABC的外接圓,AD是⊙O的直徑,且BD=BC,延長ADE,且有∠EBD=CAB

⑴求證:BE是⊙O的切線;

⑵若BC=,AC=5,求圓的直徑AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知四邊形和四邊形都是正方形,且

1)如圖1,連接、.求證:

2)如圖2,將正方形繞著點旋轉到某一位置時恰好使得,.求的度數;

3)在(2)的條件下,當正方形的邊長為時,請直接寫出正方形的邊長.

查看答案和解析>>

同步練習冊答案