【題目】如圖,矩形中,,,點(diǎn)是對(duì)角線上的動(dòng)點(diǎn)(不與、重合),設(shè),

的函數(shù)解析式,并指出的取值范圍;

連接,當(dāng)是等腰三角形時(shí),求的值.

【答案】(1);(2)是等腰三角形時(shí),的值為

【解析】

(1)利用勾股定理列式求出AC,再根據(jù)三角形的面積求出點(diǎn)D到AC的距離,然后表示出PC,再根據(jù)三角形的面積公式列式整理即可得解;
(2)分AP=AB=3;AP=BP時(shí),由等腰三角形三線合一的性質(zhì)可得點(diǎn)P在AB的垂直平分線上,此時(shí)AP=AC;AB=BP時(shí),利用∠BAC的余弦列式求出AP,然后分別代入函數(shù)關(guān)系式進(jìn)行計(jì)算即可得解.

解:,,

,

設(shè)點(diǎn)的距離為,

,

解得,

,

,

;

時(shí),,;

時(shí),點(diǎn)的垂直平分線上,,

;

時(shí),,

綜上所述,是等腰三角形時(shí),的值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,,,點(diǎn)P從點(diǎn)B出發(fā),以速度沿向點(diǎn)C運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t.

1_______.(用含t的代數(shù)式表示)

2)當(dāng)點(diǎn)P從點(diǎn)B開(kāi)始運(yùn)動(dòng),同時(shí),點(diǎn)Q從點(diǎn)C出發(fā),以的速度沿向點(diǎn)A運(yùn)動(dòng),當(dāng)時(shí),求v的值.

3)在(2)的條件下,求時(shí)v的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形中,,若四邊形面積為,則的長(zhǎng)為(

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,AB=AC,點(diǎn)EF是中線AD上的兩點(diǎn),則圖中全等三角形有幾對(duì)( )

A.4對(duì)B.5對(duì)C.6對(duì)D.7對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠AOB=40°,點(diǎn)P在∠AOB的內(nèi)部,點(diǎn)C,D分別是點(diǎn)P關(guān)于直線OAOB的對(duì)稱點(diǎn),連接CD分別交OA,OB于點(diǎn)EF.則∠EPF=___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形中,點(diǎn)上任意一點(diǎn),以為邊作正方形

①連接,求證:;

②連接,猜想的度數(shù),并證明你的結(jié)論;

③設(shè)點(diǎn)在線段上運(yùn)動(dòng),,正方形的面積為,正方形的面積為,試求的函數(shù)關(guān)系式,并寫(xiě)出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為,是對(duì)角線.將繞著點(diǎn)順時(shí)針旋轉(zhuǎn)得到,于點(diǎn),連接于點(diǎn),連接.則下列結(jié)論:

四邊形是菱形

,其中正確的結(jié)論是(

A. ①②③④ B. ①②③ C. ①② D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)大小不同的等腰直角三角板按圖①所示的位置放置,圖②是由它抽象畫(huà)出的幾何圖形,,,,,,在同一條直線上,連接.

(1)請(qǐng)找出圖②中與全等的三角形,并給予證明(說(shuō)明:結(jié)論中不得含有未標(biāo)識(shí)的字母);

(2)求證:.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在中,點(diǎn)邊上(端點(diǎn)除外)的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作直線.設(shè)的平分線于點(diǎn),交的外角平分線于點(diǎn),連接、

那么當(dāng)點(diǎn)運(yùn)動(dòng)到何處時(shí),四邊形是矩形?并說(shuō)明理由.

的前提下滿足什么條件,四邊形是正方形?(直接寫(xiě)出答案,無(wú)需證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案