【題目】如圖,∠AOB=40°,點(diǎn)P在∠AOB的內(nèi)部,點(diǎn)C,D分別是點(diǎn)P關(guān)于直線OA,OB的對稱點(diǎn),連接CD分別交OA,OB于點(diǎn)E、F.則∠EPF=___________.
【答案】100°
【解析】
根據(jù)線段垂直平分線的性質(zhì)可得CE=PE,PF=FD,進(jìn)而推出角的關(guān)系∠PEF=2∠C,∠PFE=2∠D,結(jié)合已知條件利用四邊形的內(nèi)角和得出∠AOB+∠MPN=180°,在△PEF中可得∠EPF+2∠C+2∠D=180°,即可得出答案.
∵點(diǎn)C,D分別是點(diǎn)P關(guān)于直線OA,OB的對稱點(diǎn)
∴CE=PE,PF=FD
∴∠PEF=2∠C,∠PFE=2∠D
∠PME=∠PNF=90°
在四邊形OMPN中
∴∠AOB+∠MPN=180°
∵∠EPF+2∠C+2∠D=180°
∴∠MPN+∠C+∠D=180°
∴∠C+∠D=∠AOB=40°
∴∠EPF=100°
故答案為:100°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知等邊△ABC中,D是AC的中點(diǎn),E是BC延長線上的一點(diǎn),且CE=CD,DM⊥BC,垂足為M.
(1)求∠E的度數(shù).
(2)求證:M是BE的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(0,3)、B(3,0)、C(﹣3,0).
(1)過B作直線MN⊥AB,P為線段OC上的一動(dòng)點(diǎn),AP⊥PH交直線M于點(diǎn)H,證明:PA=PH.
(2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰Rt△APQ繞點(diǎn)A旋轉(zhuǎn),且AP=PQ,∠APQ=90°,連接BQ,點(diǎn)G為BQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長線交AD于F.
(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);
(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.
①請你在圖2中補(bǔ)全圖形;
②(1)中結(jié)論成立嗎?若成立,請證明;若不成立,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)、分別在、上,連接,、的平分線交于點(diǎn),、的平分線交于點(diǎn).
求證:四邊形是矩形.
小明在完成的證明后繼續(xù)進(jìn)行了探索,過點(diǎn)作,分別交、于點(diǎn)、,過點(diǎn)作,分別交、于點(diǎn)、,得到四邊形.此時(shí),他猜想四邊形是菱形.請?jiān)谙铝锌驁D中補(bǔ)全他的證明思路.
小明的證明思路:由,,易證,四邊形是平行四邊形.要證□是菱形,只要證.由已知條件________,,可證,故只要證,即證,易證________,________,故只要證,易證,,________,故得,即可得證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,,,點(diǎn)是對角線上的動(dòng)點(diǎn)(不與、重合),設(shè),.
求與的函數(shù)解析式,并指出的取值范圍;
連接,當(dāng)是等腰三角形時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周長等于AB+BC;(4)D是AC中點(diǎn)其中正確的命題序號(hào)是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.
如:,,,因此,,這三個(gè)數(shù)都是神秘?cái)?shù).
(1)是神秘?cái)?shù)嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為和(其中取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的神秘?cái)?shù)是的倍數(shù)嗎?為什么?
(3)①若長方形相鄰兩邊長為兩個(gè)連續(xù)偶數(shù),試說明其周長一定為神秘?cái)?shù).
②在①的條件下,面積是否為神秘?cái)?shù)?為什么?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com