【題目】某區(qū)為加快美麗鄉(xiāng)村建設(shè),建設(shè)秀美幸福薛城,對(duì)AB兩類村莊進(jìn)行了全面改建.根據(jù)預(yù)算,建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬元;甲鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投人資金1140萬元.

(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是多少萬元?

(2)乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類美麗村莊的改建共需資金多少萬元?

【答案】(1)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是120萬元、180萬元;(2)乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類美麗村莊的改建共需資金1440萬元.

【解析】

1)設(shè)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是x、y萬元,根據(jù)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊共需資金300萬元,甲鎮(zhèn)建設(shè)了2個(gè)A類村莊和5個(gè)B類村莊共投入資金1140萬元,列方程組求解;
2)根據(jù)(1)求出的值代入求解.

解:(1)設(shè)建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是x萬元、y萬元.由題意,得

解得

答:建設(shè)一個(gè)A類美麗村莊和一個(gè)B類美麗村莊所需的資金分別是120、180萬元.

(2)3×120+6×180=1440(萬元).

答:乙鎮(zhèn)3個(gè)A類美麗村莊和6個(gè)B類美麗村莊的改建共需資金1440萬元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對(duì)角線AC、BD相交于點(diǎn)O.AC=8cm,BD=6cm,點(diǎn)PAC上一動(dòng)點(diǎn),點(diǎn)P1cm/的速度從點(diǎn)A出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為ts,當(dāng)t=_____s時(shí),△PAB為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+ca≠0)的圖象與x軸交于點(diǎn)A、B兩點(diǎn),與y軸交于點(diǎn)C,對(duì)稱軸為直線x=﹣1,點(diǎn)B的坐標(biāo)為(1,0),則下列結(jié)論:①AB=4;②b2﹣4ac0③ab0;④a2﹣ab+ac0,其中正確的結(jié)論有( 。﹤(gè)

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)P是雙曲線y=上的一個(gè)動(dòng)點(diǎn),連結(jié)OP,若將線段OP繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°得到線段OQ,則經(jīng)過點(diǎn)Q的雙曲線的表達(dá)式為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,正比例函數(shù)y=x的圖象經(jīng)過點(diǎn)A,點(diǎn)A的縱坐標(biāo)為4,反比例函數(shù)y=的圖象也經(jīng)過點(diǎn)A,第一象限內(nèi)的點(diǎn)B在這個(gè)反比例函數(shù)的圖象上,過點(diǎn)BBCx軸,交y軸于點(diǎn)C,且AC=AB.求:

(1)這個(gè)反比例函數(shù)的解析式;

(2)直線AB的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,A=60°,AB=2AD,BD的中垂線分別交AB,CD于點(diǎn)E,F(xiàn),垂足為O.

(1)求證:OE=OF;

(2)若AD=6,求tanABD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx的頂點(diǎn)M(,3)關(guān)于x軸的對(duì)稱點(diǎn)為B,點(diǎn)A為拋物線與x軸的一個(gè)交點(diǎn),點(diǎn)A關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為A′;已知C為A′B的中點(diǎn),P為拋物線上一動(dòng)點(diǎn),作CDx軸,PEx軸,垂足分別為D,E.

(1)求點(diǎn)A的坐標(biāo)及拋物線的解析式;

(2)當(dāng)0<x<2時(shí),是否存在點(diǎn)P使以點(diǎn)C,D,P,E為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):

阿基米德折弦定理

阿拉伯Al-Biruni(973年~1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Biruni譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德的折弦定理.

阿基米德折弦定理:如圖1,ABBC的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M的中點(diǎn),則從MBC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.

下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過程.

證明:如圖,在CB上截取CG=AB,連接MA,MB,MC和MG.∵M(jìn)是的中點(diǎn), ∴MA=MC ...

任務(wù):(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖(3),已知等邊△ABC內(nèi)接于,AB=2,D為圓上一點(diǎn),∠ABD=45°,AE⊥BD與點(diǎn)E,則△BDC的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).

(1)求證:△BGF≌△FHC;

(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案