【題目】如圖,在長度為1個單位長度的小正方形組成的正方形網(wǎng)格中,ABC的三個頂點A、BC都在格點上.

1)在圖1中畫出與ABC關(guān)于直線l成軸對稱的A1B1C1

2)在圖1中直線l上找出一點Q,使得 QA+QC1的值最小;

3)在圖1中直線l上找出一點P,使得 |PAPC1| 的值最大;

4)在圖2中,作一個E、F都在格點上,使線段BC為△BEF的角平分線

【答案】(1)見解析;(2)見解析;(3)見解析;(4)見解析.

【解析】

1)根據(jù)軸對稱圖形的性質(zhì)作圖即可;

2)根據(jù)兩點之間線段最短,連接A1、C1,與直線l的交點即為所求;

3)根據(jù)三角形兩邊之差小于第三邊的性質(zhì),可知連接A、C1,與直線l的交點即為所求;

4)根據(jù)等腰三角形三線合一的性質(zhì)可作圖.

如圖所示:

1

2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC中,∠A90°ABAC,DBC邊上的中點,E、F分別是AB、AC上的點,且∠EDF90°,求證:BEAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以邊長為2的正方形的中心O為端點,引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點,則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,Ay軸正半軸上一點,過點Ax軸的平行線,交函數(shù)的圖象于B點,交函數(shù)的圖象于C,過Cy軸和平行線交BO的延長線于D

(1)如果點A的坐標(biāo)為(0,2),求線段AB與線段CA的長度之比;

(2)如果點A的坐標(biāo)為(0,a),求線段AB與線段CA的長度之比;

(3)在(1)條件下,四邊形AODC的面積為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】數(shù)學(xué)問題:計算(其中m,n都是正整數(shù),且m2,n1).

探究問題:為解決上面的數(shù)學(xué)問題,我們運用數(shù)形結(jié)合的思想方法,通過不斷地分割一個面積為1的正方形,把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,并采取一般問題特殊化的策略來進行探究.

探究一:計算

1次分割,把正方形的面積二等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)二等分,…;

n次分割,把上次分割圖中空白部分的面積最后二等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣

探究二:計算++++

1次分割,把正方形的面積三等分,其中陰影部分的面積為;

2次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,陰影部分的面積之和為+;

3次分割,把上次分割圖中空白部分的面積繼續(xù)三等分,…;

n次分割,把上次分割圖中空白部分的面積最后三等分,所有陰影部分的面積之和為++++,最后空白部分的面積是

根據(jù)第n次分割圖可得等式: ++++=1﹣,

兩邊同除以2,得++++=

探究三:計算++++

(仿照上述方法,只畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并寫出探究過程)

解決問題:計算++++

(只需畫出第n次分割圖,在圖上標(biāo)注陰影部分面積,并完成以下填空)

根據(jù)第n次分割圖可得等式:_________

所以, ++++=________

拓廣應(yīng)用:計算 ++++

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】①如圖1,有一個三角形,它的內(nèi)角分別為:25°,50°,105°請你把這個三角形分成兩個等腰三角形.畫出你分割的示意圖并標(biāo)注必要的角度。

②如圖2,有兩個直角三角形,如圖所示,∠C=F=90°,∠A, B, D, E的度數(shù)分別是,它們互不相等。請你將這兩個三角形分別分割成兩個三角形,使所分成的兩個三角形與所分成的兩個三角形角度對應(yīng)相等。畫出你分割的示意圖并用字母標(biāo)注必要的角度。

③如圖3,在正方形所在平面內(nèi)找一點,使其與正方形中的每一邊所構(gòu)成的三角形均為等腰三角形,這樣的點有________.

④如圖4,在等邊△ABC所在平面內(nèi)找一點Q,使其與等邊三角形中的每一邊所構(gòu)成的三角形均為等腰三角形,這樣的點有________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,在邊長為1的正方形網(wǎng)格中,△AOB的頂點均在格點上,點A,B的坐標(biāo)分別是A(3,1),B(2,3).

(1)請在圖中畫出△AOB關(guān)于y軸的對稱△AOB′,點A′的坐標(biāo)為  ,點B′的坐標(biāo)為  ;

(2)請寫出A′點關(guān)于x軸的對稱點A′'的坐標(biāo)為  ;

(3)求△AOB′的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點A、Dy軸正半軸上,點BC分別在x軸上,CD平分∠ACB,與y軸交于D點,∠CAO=90°-BDO.

1)求證:AC=BC

2)如圖2,點C的坐標(biāo)為(4,0),點EAC上一點,且∠DEA=DBO,求BC+EC的長;

3)如圖3,過DDFACF點,點HFC上一動點,點GOC上一動點,當(dāng)HFC上移動、點GOC上移動時,始終滿足∠GDH=GDO+FDH,試判斷FH、GHOG這三者之間的數(shù)量關(guān)系,寫出你的結(jié)論并加以證明.

(圖3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】同學(xué)們,學(xué)習(xí)了無理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴大到了實數(shù)的范圍,這說明我們的知識越來越豐富了!可是,無理數(shù)究竟是一個什么樣的數(shù)呢?下面讓我們在幾個具體的圖形中認(rèn)識一下無理數(shù).

1)如圖①△ABC是一個邊長為2的等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開拼成如圖②的正方形ABCD,則這個正方形的面積也就等于正方形的面積即為2,則這個正方形的邊長就是,它是一個無理數(shù).

2)如圖,直徑為1個單位長度的圓從原點O沿數(shù)軸向右滾動一周,圓上的一點P(滾動時與點O重合)由原點到達點O′,則OO′的長度就等于圓的周長,所以數(shù)軸上點O′代表的實數(shù)就是_____,它是一個無理數(shù).

3)如圖,在RtABC中,∠C=90°,AC=2BC=1,根據(jù)已知可求得AB=_____,它是一個無理數(shù).好了,相信大家對無理數(shù)是不是有了更具體的認(rèn)識了,那么你也試著在圖形中作出兩個無理數(shù)吧:

①你能在6×8的網(wǎng)格圖中(每個小正方形邊長均為1),畫出一條長為的線段嗎?

②學(xué)習(xí)了實數(shù)后,我們知道數(shù)軸上的點與實數(shù)是一一對應(yīng)的關(guān)系,那么你能在數(shù)軸上找到表示-的點嗎?

查看答案和解析>>

同步練習(xí)冊答案