【題目】同學(xué)們,學(xué)習(xí)了無(wú)理數(shù)之后,我們已經(jīng)把數(shù)的領(lǐng)域擴(kuò)大到了實(shí)數(shù)的范圍,這說(shuō)明我們的知識(shí)越來(lái)越豐富了!可是,無(wú)理數(shù)究竟是一個(gè)什么樣的數(shù)呢?下面讓我們?cè)趲讉(gè)具體的圖形中認(rèn)識(shí)一下無(wú)理數(shù).
(1)如圖①△ABC是一個(gè)邊長(zhǎng)為2的等腰直角三角形,它的面積是2,把它沿著斜邊的高線剪開(kāi)拼成如圖②的正方形ABCD,則這個(gè)正方形的面積也就等于正方形的面積即為2,則這個(gè)正方形的邊長(zhǎng)就是,它是一個(gè)無(wú)理數(shù).
(2)如圖,直徑為1個(gè)單位長(zhǎng)度的圓從原點(diǎn)O沿?cái)?shù)軸向右滾動(dòng)一周,圓上的一點(diǎn)P(滾動(dòng)時(shí)與點(diǎn)O重合)由原點(diǎn)到達(dá)點(diǎn)O′,則OO′的長(zhǎng)度就等于圓的周長(zhǎng),所以數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是_____,它是一個(gè)無(wú)理數(shù).
(3)如圖,在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)已知可求得AB=_____,它是一個(gè)無(wú)理數(shù).好了,相信大家對(duì)無(wú)理數(shù)是不是有了更具體的認(rèn)識(shí)了,那么你也試著在圖形中作出兩個(gè)無(wú)理數(shù)吧:
①你能在6×8的網(wǎng)格圖中(每個(gè)小正方形邊長(zhǎng)均為1),畫(huà)出一條長(zhǎng)為的線段嗎?
②學(xué)習(xí)了實(shí)數(shù)后,我們知道數(shù)軸上的點(diǎn)與實(shí)數(shù)是一一對(duì)應(yīng)的關(guān)系,那么你能在數(shù)軸上找到表示-的點(diǎn)嗎?
【答案】(2)
(3)
①見(jiàn)解析
②見(jiàn)解析
【解析】
(2)由(1)的結(jié)論我們可以得到數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是無(wú)理數(shù)
(3)直接運(yùn)用勾股定理求出AB即可.
①畫(huà)出一條長(zhǎng)為的線段問(wèn)題,可由已知圖形及勾股定理得出可以做一個(gè)兩直角邊為3和1的三角形,其斜邊長(zhǎng)為;
②在數(shù)軸上找到表示-的點(diǎn)的問(wèn)題,,所以應(yīng)是兩直角邊為2,1的直角三角形的斜邊.
(2)∵OO′的長(zhǎng)度就等于圓的周長(zhǎng),所以數(shù)軸上點(diǎn)O′代表的實(shí)數(shù)就是,
故答案為;
(3)在Rt△ABC中,∠C=90°,AC=2,BC=1,根據(jù)勾股定理得:
AB=,
故答案為.
①∵,
∴連接緊相連的3個(gè)小正方形的對(duì)角線AB,則對(duì)角線AB就是要畫(huà)一條長(zhǎng)為的線段如圖:
②在數(shù)軸上做一個(gè)兩直角邊分別為2,1的直角三角形;以原點(diǎn)為圓心,所畫(huà)直角邊的斜邊為半徑畫(huà)弧,交數(shù)軸的負(fù)半軸于一點(diǎn)A,這點(diǎn)就是所求的表示-的點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)A、B、C都在格點(diǎn)上.
(1)在圖1中畫(huà)出與△ABC關(guān)于直線l成軸對(duì)稱的△A1B1C1;
(2)在圖1中直線l上找出一點(diǎn)Q,使得 QA+QC1的值最。
(3)在圖1中直線l上找出一點(diǎn)P,使得 |PAPC1| 的值最大;
(4)在圖2中,作一個(gè),E、F都在格點(diǎn)上,使線段BC為△BEF的角平分線
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為正方形(各邊相等,各內(nèi)角為直角),E是BC邊上一點(diǎn),F是CD上的一點(diǎn).
(1)若△CFE的周長(zhǎng)等于正方形ABCD的周長(zhǎng)的一半,求證:∠EAF=45°;
(2)在(1)的條件下,若DF=2,CF=4,CE=3,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(﹣1,﹣1),B(﹣4,﹣2),C(﹣1,﹣4).
(1)點(diǎn)A關(guān)于y軸對(duì)稱的點(diǎn)的坐標(biāo)是;
(2)畫(huà)出△ABC關(guān)于x軸對(duì)稱的△A1B1C1分別寫(xiě)出點(diǎn)A1,B1,C1的坐標(biāo);
(3)求△A1B1C1的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠ABC與∠ACB的平分線交于點(diǎn)P.
(1)當(dāng)∠A=40°,∠ABC=60°時(shí),求∠BPC的度數(shù);
(2)當(dāng)∠A=α°時(shí),求∠BPC的度數(shù).(用α的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】王老師從學(xué)校出發(fā),到距學(xué)校的某商場(chǎng)去給學(xué)生買獎(jiǎng)品,他先步行了后,換騎上了共享單車,到達(dá)商場(chǎng)時(shí),全程總共剛好花了.已知王老師騎共享單車的平均速度是步行速度的3倍(轉(zhuǎn)換出行方式時(shí),所需時(shí)間忽略不計(jì)).
(1)求王老師步行和騎共享單車的平均速度分別為多少?
(2)買完獎(jiǎng)品后,王老師原路返回,為按時(shí)上班,路上所花時(shí)間最多只剩10分鐘,若王老師仍采取先步行,后換騎共享單車的方式返回,問(wèn):他最多可步行多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線交于點(diǎn)O,點(diǎn)E、F分別在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延長(zhǎng)線交于點(diǎn)M,OF、AB的延長(zhǎng)線交于點(diǎn)N,連接MN.
(1)求證:OM=ON.
(2)若正方形ABCD的邊長(zhǎng)為4,E為OM的中點(diǎn),求MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,D為BC的中點(diǎn),DE⊥BC交∠BAC的平分線AE于E,EF⊥AB于F,EG⊥AC交AC的延長(zhǎng)線于G,AB=5,AC=3.求CG.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com