【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對應值如下表:

x

-2

-1

0

1

2

y

11

6

3

2

3

則當y≤6x的取值范圍是______

【答案】-1≤x≤3

【解析】

由當x=0x=2y=3可得出二次函數(shù)圖象的對稱軸及頂點坐標,由其頂點縱坐標小于其他點的坐標可得出a>0,由當x=-1y=6可得出當x=3y=6,再利用二次函數(shù)的性質即可得出當y≤6x的取值范圍.

解:∵當x=0x=2時,y=3,

∴二次函數(shù)圖象的對稱軸為直線,二次函數(shù)圖象的頂點坐標為(1,2).

y=2為最小值,

a>0.

∵當x=-1時,y=6,

∴當x=3時,y=6.

又∵a>0,

∴當-1≤x≤3時,y≤6.

故答案為:-1≤x≤3.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠B=90°A

(1)如圖1,求證:AB=AC;

(2)如圖2,若∠BAC=90°,點DAB上一點,過點B作直線CD的垂線,垂足為E,連接AE, 求∠AEC的度數(shù);

(3)如圖3,在(2)的條件下,過點AAE的垂線交CE于點F,連接BF,若∠ABF-EAB=15°GDF上一點,連接AG,若∠AGD=EBF,AG=6,CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC 是等邊三角形,點 P 在△ABC 內,PA=2,將△PAB 繞點 A 逆時針旋轉得到△P1AC,則 P1P 的長等于( )

A. 2 B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用元采購一批書包,上市后發(fā)現(xiàn)供不應求,很快銷售完了.商店又去采購第二批同樣款式的書包,進貨單價比第一次高元,商店用了元,所購數(shù)量是第一次的.

1)求第一批采購的書包的單價是多少元?

2)若商店按售價為每個書包元,銷售完這兩批書包,總共獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,對稱軸為x=1,經過點(-1,0),有下列結論:①abc0;②a+cb;③3a+c=0;④a+bmam+b)(其中m≠1)其中正確的結論有( 。

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】高爾夫運動員將一個小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間(s)滿足二次函數(shù)關系,th的幾組對應值如下表所示:

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

1)求ht之間的函數(shù)關系式(不要求寫t的取值范圍);

2)求小球飛行3s時的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于代數(shù)式ax2+bx+c(a≠0),下列說法正確的是( )

①如果存在兩個實數(shù)p≠q,使得ap2+bp+c=aq2+bq+c,則a+bx+c=a(x-p)(x-q)

②存在三個實數(shù)m≠n≠s,使得am2+bm+c=an2+bn+c=as2+bs+c

③如果ac<0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

④如果ac>0,則一定存在兩個實數(shù)m<n,使am2+bm+c<0<an2+bn+c

A. B. ①③ C. ②④ D. ①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠ACB中,∠ACB=30°,將△ABC繞點C順時針旋轉60°得到△DEC,連接AE.

(1)求證:△ABC≌△AEC;

(2)若AB=AC,試判斷四邊形ACDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A(1,4)和點B(5,1)在平面直角坐標系中的位置如圖所示:

(1)點A1、B1分別為點A、B關于y軸的對稱點,請畫出四邊形AA1B1B,并寫出A1、B1的坐標;

(2)在(1)的條件下,畫一條過四邊形AA1B1B的一個頂點的線段,將四邊形AA1B1B分成兩個圖形,并且使分得的圖形中的一個是軸對稱圖形.

查看答案和解析>>

同步練習冊答案