【題目】如圖,平行四邊形ABCD的對角線AC,BD相交于點O,點E,F(xiàn)分別是線段AO,BO的中點,若AC+BD=24厘米,△OAB的周長是18厘米,則EF為(
A.3厘米
B.4厘米
C.5厘米
D.6厘米

【答案】A
【解析】解:∵平行四邊形ABCD的對角線AC,BD相交于點O, ∴AO=CO,BO=DO,
∵AC+BD=24厘米,
∴AO+BO=12厘米,
∵△OAB的周長是18厘米,
∴AB=6厘米,
∵點E,F(xiàn)分別是線段AO,BO的中點,
∴EF= AB=3cm.
故選:A.
【考點精析】解答此題的關(guān)鍵在于理解三角形中位線定理的相關(guān)知識,掌握連接三角形兩邊中點的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半,以及對平行四邊形的性質(zhì)的理解,了解平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補(bǔ);平行四邊形的對角線互相平分.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段AB=12cm,點CAB上的一個動點,點D、E分別是ACBC的中點.

1)若AC=4cm,求DE的長;

2試?yán)?/span>字母代替數(shù)的方法,說明不論AC取何值(不超過12cm),DE的長不變;

3)知識遷移:如圖②,已知∠AOB=120°,過角的內(nèi)部任一點C畫射線OC,若OD、OE分別平分∠AOC和∠BOC,試說明∠DOE的度數(shù)與射線OC的位置無關(guān).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,一個以點A為頂點的45°角繞點A旋轉(zhuǎn),角的兩邊分別與邊BC、DC的延長線交于點E、F,連接EF。設(shè)CE=aCF=b。

(1)如圖1,當(dāng)∠EAF被對角線AC平分時,求a、b的值;

(2)當(dāng)△AEF是直角三角形時,求a、b的值;

(3)如圖3,探索∠EAF繞點A旋轉(zhuǎn)的過程中a、b滿足的關(guān)系式,并說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將一幅三角板按照如圖所示的位置放置在直線上, 45°90°,30°,60°.將含45°銳角的三角板固定不動,含30°銳角的三角板繞點順時針旋轉(zhuǎn)1周,在此過程中:

(1)如圖,當(dāng)點內(nèi)部時,連接.

①若平分,試問是否也平分?請說明理由.

②若, , ,試探究、、這三者之間有什么數(shù)量關(guān)系?請用一個含、、的等式來表達(dá),并說明理由.

2如圖, 的角平分線,當(dāng)所在直線與所在直線互相垂直時,請直接寫出的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(2a)(ab)=( )

A. 2ab B. 2a2b C. 3ab D. 3 a2b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年消費者的旅游消費不斷升級。根據(jù)國家旅游局?jǐn)?shù)據(jù)中心綜合測算,2017年春節(jié)期間,全國共接待游客3.44億人次,實現(xiàn)旅游總收入4233億元。將4233億用科學(xué)記數(shù)法表( )
A.4.233×109
B.4.233×1010
C.4.233×1011
D.4.233×1012

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從地面上的點A看一山坡上的電線桿PQ,測得桿頂端點P的仰角是45°,向前走6m到達(dá)B點,測得桿頂端點P和桿底端點Q的仰角分別是60°30°

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度(結(jié)果精確到1m).

備用數(shù)據(jù):,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】多項式﹣x+x3+1﹣x2按x的升冪排列正確的是(
A.x2﹣x+x3+1
B.1﹣x2+x+x3
C.1﹣x﹣x2+x3
D.x3﹣x2+1﹣x

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知甲加工A型零件60個所用時間和乙加工B型零件80個所用時間相同,甲、乙兩人每天共加工35個零件,設(shè)甲每天加工x個A型零件.
(1)求甲、乙每天各加工零件多少個?
(2)根據(jù)市場預(yù)測,加工A型零件所獲得的利潤為m元/件(3≤m≤5),加工B型零件所獲得的利潤每件比A型少1元.求甲、乙每天加工的零件所獲得的總利潤P(元)與m的函數(shù)關(guān)系式,并求P的最大值和最小值.

查看答案和解析>>

同步練習(xí)冊答案