【題目】如圖,從地面上的點(diǎn)A看一山坡上的電線桿PQ,測(cè)得桿頂端點(diǎn)P的仰角是45°,向前走6m到達(dá)B點(diǎn),測(cè)得桿頂端點(diǎn)P和桿底端點(diǎn)Q的仰角分別是60°30°

1)求∠BPQ的度數(shù);

2)求該電線桿PQ的高度(結(jié)果精確到1m).

備用數(shù)據(jù):,

【答案】(130°;(29m

【解析】試題分析:(1)延長(zhǎng)PQ交直線AB于點(diǎn)E,根據(jù)直角三角形兩銳角互余求得即可;

2)設(shè)PE=x米,在直角△APE和直角△BPE中,根據(jù)三角函數(shù)利用x表示出AEBE,根據(jù)AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函數(shù)求得QE的長(zhǎng),則PQ的長(zhǎng)度即可求解.

試題解析:延長(zhǎng)PQ交直線AB于點(diǎn)E,

1∠BPQ=90°-60°=30°;

2)設(shè)PE=x米.

在直角△APE中,∠A=45°,

AE=PE=x米;

∵∠PBE=60°

∴∠BPE=30°

在直角BPE中,BE=PE=x米,

∵AB=AE-BE=6米,

x-x=6,

解得:x=9+3

BE=3+3)米.

在直角BEQ中,QE=BE=3+3=3+)米.

PQ=PE-QE=9+3-3+=6+2≈9(米).

答:電線桿PQ的高度約9米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線經(jīng)過A(3,0)、B(4,1)兩點(diǎn),且與y軸交于點(diǎn)C.

(1)求拋物線的解析式;

(2)如圖1,設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為D,在拋物線的對(duì)稱軸上找一點(diǎn)H,使△CDH的周長(zhǎng)最小,求出H點(diǎn)的坐標(biāo)并求出最小周長(zhǎng)值;

(3)如圖2,連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合),經(jīng)過A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,當(dāng)△OEF的面積取得最小值時(shí),求面積的最小值及E點(diǎn)坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩個(gè)倉庫共存有糧食60解決下列問題,3個(gè)小題都要寫出必要的解題過程:

1甲倉庫運(yùn)進(jìn)糧食14,乙倉庫運(yùn)出糧食10后,兩個(gè)倉庫的糧食數(shù)量相等.甲、乙兩個(gè)倉庫原來各有多少糧食?

2如果甲倉庫原有的糧食比乙倉庫的2倍少3,則甲倉庫運(yùn)出多少糧食給乙倉庫,可使甲、乙兩倉庫糧食數(shù)量相等?

3甲乙兩倉庫同時(shí)運(yùn)進(jìn)糧食,甲倉庫運(yùn)進(jìn)的數(shù)量比本倉庫原存糧食數(shù)量的一半多1,乙倉庫運(yùn)進(jìn)的數(shù)量是本倉庫原有糧食數(shù)量加上8所得的和的一半求此時(shí)甲、乙兩倉庫共有糧食多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,點(diǎn)E,F(xiàn)分別是線段AO,BO的中點(diǎn),若AC+BD=24厘米,△OAB的周長(zhǎng)是18厘米,則EF為(
A.3厘米
B.4厘米
C.5厘米
D.6厘米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,AE=AB,直線DE交BC于點(diǎn)F,則∠BEF=度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 ,

)根據(jù)所給的條件用量角器和三角板畫出圖形.

)求的度數(shù).

(注意:可能存在不同的情形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在①ab是一次單項(xiàng)式;②單項(xiàng)式﹣x2y的系數(shù)是﹣1;③3+x2﹣4x是按x的降冪排列的;④數(shù)4是單項(xiàng)式;這四句話中不正確的是(
A.①③
B.②③
C.②④
D.①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將代數(shù)式3x2y+5xy2﹣3y3﹣5x3按y的降冪排列是(
A.﹣5x3+3x2y+5xy2﹣3y3
B.﹣3y3+5xy2+3x2y﹣5x3
C.﹣5x3﹣3y3+3x2y+5xy2
D.3x2y+5xy2﹣3y3﹣5x3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,黑、白兩個(gè)甲殼蟲同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲各爬行完第2013條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是(
A.0
B.1
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案