如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
(1)畫出△OAB關(guān)于點(diǎn)O成中心對稱的△OA1B1,并寫出點(diǎn)B1的坐標(biāo);
(2)求出以點(diǎn)B1為頂點(diǎn),并經(jīng)過點(diǎn)B的二次函數(shù)關(guān)系式.
(1)∵∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
∴A(4,0),
∴A、B關(guān)于O點(diǎn)的對稱點(diǎn)的坐標(biāo)為:A1(-4,0),B1(-4,-2).
∴在平面直角坐標(biāo)系中描出A1、B1點(diǎn)的坐標(biāo),再順次連接就形成了△OA1B1.

(2)∵B1點(diǎn)是拋物線的頂點(diǎn),其坐標(biāo)為:(-4,-2),設(shè)拋物線的解析式為:y=a(x+4)2-2,且過B(4,2),
∴2=64a-2,
∴a=
1
16
,
拋物線的解析式為:y=
1
16
(x+4)2-2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,過O且半徑為5的⊙P交x的正半軸于點(diǎn)M(2m,0)、交y軸的負(fù)半軸于點(diǎn)D,弧OBM與弧OAM關(guān)于x軸對稱,其中A、B、C是過點(diǎn)P且垂直于x軸的直線與兩弧及圓的交點(diǎn).
(1)當(dāng)m=4時(shí),
①填空:B的坐標(biāo)為______,C的坐標(biāo)為______,D的坐標(biāo)為______;
②若以B為頂點(diǎn)且過D的拋物線交⊙P于點(diǎn)E,求此拋物線的函數(shù)關(guān)系式和寫出點(diǎn)E的坐標(biāo);
③除D點(diǎn)外,直線AD與②中的拋物線有無其它公共點(diǎn)并說明理由.
(2)是否存在實(shí)數(shù)m,使得以B、C、D、E為頂點(diǎn)的四邊形組成菱形?若存在,求m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2上的點(diǎn)D、C與x軸上的點(diǎn)A(-6,0)、B(4,0)構(gòu)成平行四邊形ABCD,CD與y軸交于點(diǎn)E(0,6),求a的值及直線BC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=x2-mx+m-2.
(1)求證:無論m為任何實(shí)數(shù),該二次函數(shù)的圖象與x軸都有兩個(gè)交點(diǎn);
(2)當(dāng)該二次函數(shù)的圖象經(jīng)過點(diǎn)(3,6)時(shí),求二次函數(shù)的解析式;
(3)將直線y=x向下平移2個(gè)單位長度后與(2)中的拋物線交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),一個(gè)動點(diǎn)P自A點(diǎn)出發(fā),先到達(dá)拋物線的對稱軸上的某點(diǎn)E,再到達(dá)x軸上的某點(diǎn)F,最后運(yùn)動到點(diǎn)B.求使點(diǎn)P運(yùn)動的總路徑最短的點(diǎn)E、點(diǎn)F的坐標(biāo),并求出這個(gè)最短總路徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一矩形ABCO,其頂點(diǎn)為A(0,1)、B(-3
3
,1)、C(-3
3
,0)、O(0,0).將此矩形沿著過E(-
3
,1)、F(-
4
3
3
,0)的直線EF向右下方翻折,B、C的對應(yīng)點(diǎn)分別為B′、C′.
(1)求折痕所在直線EF的解析式;
(2)一拋物線經(jīng)過B、E、B′三點(diǎn),求此二次函數(shù)解析式;
(3)能否在直線EF上求一點(diǎn)P,使得△PBC周長最。咳缒,求出點(diǎn)P的坐標(biāo);若不能,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,將拋物線C1:y=x2+3先向右平移1個(gè)單位,再向下平移7個(gè)單位得到拋物線C2.C2的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)).
(1)求拋物線C2的解析式;
(2)若拋物線C2的對稱軸與x軸交于點(diǎn)C,與拋物線C2交于點(diǎn)D,與拋物線C1交于點(diǎn)E,連結(jié)AD、DB、BE、EA,請證明四邊形ADBE是菱形,并計(jì)算它的面積;
(3)若點(diǎn)F為對稱軸DE上任意一點(diǎn),在拋物線C2上是否存在這樣的點(diǎn)G,使以O(shè)、B、F、G四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,請求出點(diǎn)G的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=-
1
2
x2+bx+4
上有不同的兩點(diǎn)E(k+3,-k2+1)和F(-k-1,-k2+1).
(1)求拋物線的解析式;
(2)如圖,拋物線y=-
1
2
x2+bx+4
與x軸和y軸的正半軸分別交于點(diǎn)A和B,M為AB的中點(diǎn),∠PMQ在AB的同側(cè)以M為中心旋轉(zhuǎn),且∠PMQ=45°,MP交y軸于點(diǎn)C,MQ交x軸于點(diǎn)D.設(shè)AD的長為m(m>0),BC的長為n,求n和m之間的函數(shù)關(guān)系式;
(3)當(dāng)m,n為何值時(shí),∠PMQ的邊過點(diǎn)F?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+mx+3與x軸的一個(gè)交點(diǎn)A(3,0).
(1)你一定能分別求出這條拋物線與x軸的另一個(gè)交點(diǎn)B及與y軸的交點(diǎn)C的坐標(biāo),試試看;
(2)設(shè)拋物線的頂點(diǎn)為D,請?jiān)趫D中畫出拋物線的草圖.若點(diǎn)E(-2,n)在直線BC上,試判斷E點(diǎn)是否在經(jīng)過D點(diǎn)的反比例函數(shù)的圖象上,把你的判斷過程寫出來;
(3)請?jiān)O(shè)法求出tan∠DAC的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖①,四邊形ABCD是邊長為5的正方形,以BC的中點(diǎn)O為原點(diǎn),BC所在直線為x軸建立平面直角坐標(biāo)系.拋物線y=ax2經(jīng)過A、O、D三點(diǎn),圖②和圖③是把一些這樣的小正方形及其內(nèi)部拋物線部分經(jīng)過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.

查看答案和解析>>

同步練習(xí)冊答案