如圖①,四邊形ABCD是邊長(zhǎng)為5的正方形,以BC的中點(diǎn)O為原點(diǎn),BC所在直線為x軸建立平面直角坐標(biāo)系.拋物線y=ax2經(jīng)過A、O、D三點(diǎn),圖②和圖③是把一些這樣的小正方形及其內(nèi)部拋物線部分經(jīng)過拼組得到的.

(1)a的值為______;
(2)圖②中矩形EFGH的面積為______;
(3)圖③中正方形PQRS的面積為______.
(1)根據(jù)題意得點(diǎn)D的坐標(biāo)為(
5
2
,5),把點(diǎn)D(
5
2
,5)代入y=ax2得a=
4
5
;

(2)如圖②,根據(jù)題意得正方形IJKL沿射線JU方向平行移動(dòng)15個(gè)單位長(zhǎng)度與正方形MNUT重合,
由平行移動(dòng)的性質(zhì)可知EH=15,同理可得EF=10,
∴S矩形EFGH=15×10=150;


(3)如圖③,建立平面直角坐標(biāo)系,
設(shè)Q點(diǎn)坐標(biāo)為(m,
4
5
m2),
其中m<0,由拋物線,正方形的對(duì)稱性可得ZQ=VQ,
5
2
-m=5-
4
5
m2
解得m1=-
5
4
,m2=
5
2
(舍去),
∴點(diǎn)Q坐標(biāo)為(-
5
4
5
4
),
∴RQ=2[
5
2
-(-
5
4
)]=
15
2

∴S正方形PORS=RQ2=(
15
2
2=
225
4
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=-x2+bx+c與x軸的兩個(gè)交點(diǎn)分別為Α(1,0),B(3,0),
(1)求此拋物線的解析式;
(2)設(shè)此拋物線的頂點(diǎn)為D,與y軸的交點(diǎn)為C,試求四邊形ΑBCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

小王利用計(jì)算機(jī)設(shè)計(jì)了一個(gè)計(jì)算程序,輸入和輸出的數(shù)據(jù)如下表:
輸入12345
輸出25101726
若輸入的數(shù)據(jù)是x時(shí),輸出的數(shù)據(jù)是y,y是x的二次函數(shù),則y與x的函數(shù)表達(dá)式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c(a≠0)頂點(diǎn)為C(1,1)且過原點(diǎn)O.過拋物線上一點(diǎn)P(x,y)向直線y=
5
4
作垂線,垂足為M,連FM(如圖).
(1)求字母a,b,c的值;
(2)在直線x=1上有一點(diǎn)F(1,
3
4
)
,求以PM為底邊的等腰三角形PFM的P點(diǎn)的坐標(biāo),并證明此時(shí)△PFM為正三角形;
(3)對(duì)拋物線上任意一點(diǎn)P,是否總存在一點(diǎn)N(1,t),使PM=PN恒成立?若存在請(qǐng)求出t值,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△OAB中,∠OAB=90°,且點(diǎn)B的坐標(biāo)為(4,2).
(1)畫出△OAB關(guān)于點(diǎn)O成中心對(duì)稱的△OA1B1,并寫出點(diǎn)B1的坐標(biāo);
(2)求出以點(diǎn)B1為頂點(diǎn),并經(jīng)過點(diǎn)B的二次函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,有一座拋物線形的拱橋,橋下的正常水位為OA,此時(shí)水面寬為40米,水面離橋的最大高度為16米,則拱橋所在的拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(1,0),B(-3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為P,連接AC.
(1)求此拋物線的解析式;
(2)拋物線對(duì)稱軸上是否存在一點(diǎn)M,使得S△MAP=2S△ACP?若存在,求出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,B是長(zhǎng)度為1的線段AE上任意一點(diǎn),在AE的同一側(cè)分別作正方形ABCD和長(zhǎng)方形BEFG,且EF=2BE.

(1)點(diǎn)B在何處時(shí),正方形ABCD的面積與長(zhǎng)方形BEFG的面積和最小,最小值為多少?
(2)若點(diǎn)C與點(diǎn)G重合,M為AB中點(diǎn),N為EF中點(diǎn),MN與BC交于點(diǎn)H(如圖2所示),將△OMA沿直線DM,△MNE沿直線MN分別向矩形AEFD內(nèi)折疊,求四邊形DMNF未被兩個(gè)折疊三角形覆蓋的圖形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

矩形OABC在平面直角坐標(biāo)系中位置如圖所示,A、C兩點(diǎn)的坐標(biāo)分別為A(6,0),C(0,-3),直線y=-
3
4
x與BC邊相交于D點(diǎn).
(1)求點(diǎn)D的坐標(biāo);
(2)若拋物線y=ax2-
9
4
x經(jīng)過點(diǎn)A,試確定此拋物線的表達(dá)式;
(3)設(shè)(2)中的拋物線的對(duì)稱軸與直線OD交于點(diǎn)M,點(diǎn)P為對(duì)稱軸上一動(dòng)點(diǎn),以P、O、M為頂點(diǎn)的三角形與△OCD相似,求符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案