如圖,M點是正比例函數(shù)y=kx和反比例函數(shù)的圖象的一個交點.

(1)求這兩個函數(shù)的解析式;

(2)在反比例函數(shù)的圖象上取一點P,過點P做PA垂直于x軸,垂足為A,點Q是直線MO上一點,QB垂直于y軸,垂足為B,直線MO上是否存在這樣的點Q,使得△OBQ的面積是△OPA的面積的2倍?如果存在,請求出點Q的坐標,如果不存在,請說明理由;

答案:
解析:

  (1)由圖可知,點的坐標為(-1,2) 1分

  點是正比例函數(shù)和反比例函數(shù)

  圖象的一個交點

  , 2分

  (2)∵點在反比例函數(shù)的圖象上,且

  ∴ 3分

  設

  由題意可知:

  ∴ 4分

  ∴

  

  ∴點的坐標()或() 5分


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的精英家教網(wǎng)頂點為M,又正比例函數(shù)y=kx的圖象于二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)0<k<2時,求四邊形PCMB的面積s的最小值.
【參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知正比例函數(shù)y=ax(a≠0)的圖象與反比例函致y=
kx
(k≠0)的圖象的一個交點為A(-1,2-k2),另一個交點為B,且A、B關于原點O對稱,D為OB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于C、E.
(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;
(2)試計算△COE的面積是△ODE面積的多少倍?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象與二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)值時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)當k為何值時且0<k<2,求四邊形PCMB的面積為
93
16

(參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為(
x1+x2
2
,
y1+y2
2
)

查看答案和解析>>

科目:初中數(shù)學 來源:第2章《二次函數(shù)》中考題集(35):2.7 最大面積是多少(解析版) 題型:解答題

如圖,已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過三點A(-1,0),B(3,0),C(0,3),它的頂點為M,又正比例函數(shù)y=kx的圖象于二次函數(shù)相交于兩點D、E,且P是線段DE的中點.
(1)求該二次函數(shù)的解析式,并求函數(shù)頂點M的坐標;
(2)已知點E(2,3),且二次函數(shù)的函數(shù)值大于正比例函數(shù)時,試根據(jù)函數(shù)圖象求出符合條件的自變量x的取值范圍;
(3)0<k<2時,求四邊形PCMB的面積s的最小值.
【參考公式:已知兩點D(x1,y1),E(x2,y2),則線段DE的中點坐標為

查看答案和解析>>

科目:初中數(shù)學 來源:2010年高級中等學校招生全國統(tǒng)一考試數(shù)學卷(遼寧沈陽) 題型:解答題

如圖,已知正比例函數(shù)y = axa≠0)的圖象與反比例函致k≠0)的圖象的一個交點為A(-1,2-k2),另—個交點為B,且AB關于原點O對稱,DOB的中點,過點D的線段OB的垂直平分線與x軸、y軸分別交于CE

(1)寫出反比例函數(shù)和正比例函數(shù)的解析式;

(2)試計算△COE的面積是△ODE面積的多少倍.

 

查看答案和解析>>

同步練習冊答案