【題目】下列命題:
垂直于同一直線的兩條直線互相平行;的平方根是;若一個角的兩邊與另一個角的兩邊互相垂直,且其中一個角是45°,則另一個角為45°或135°;④若是的整數(shù)部分,是不等式的最大整數(shù)解,則關(guān)于,方程的自然數(shù)解共有3對;⑤在平面直角坐標系中,點A、B的坐標分別為(2,0),(0,1),將線段AB平移至,的位置,則.其中真命題的個數(shù)是( 。
A.2B.3C.4D.5
【答案】B
【解析】
根據(jù)“在同一平面上,垂直于同一條直線的兩條直線互相平行”、平方根、立方根的計算、直線的位置關(guān)系、不等式的求解、平面直角坐標系中有序數(shù)對的概念及平移的知識一一判斷即可.
解:①根據(jù)“在同一平面上,垂直于同一條直線的兩條直線互相平行”,故①錯誤;
②∵,∴4的平方根是,故②錯誤;
③如果一個角的兩邊與另一個角的兩邊分別垂直,那么這兩個角的關(guān)系是相等或互補;
在圖1中,根據(jù)垂直的角相等,都等于90°,對頂角相等,所以∠1=∠2=45°;
在圖2中,同樣根據(jù)垂直的兩個角相等,都等于90°,又有四邊形的內(nèi)角和等于360°,所以∠1+∠2=360°-90°-90°=180°。所以兩個角互補,所以∠2=135°,
故③正確;
④∵,∴,∴,
∵的解集為,∴,
為,則自然數(shù)對有(0,5)、(1,3)、(2,1),共3對,故④正確;
⑤∵點A的坐標為(2,0),,
∴向右平移了1個單位,
∵點B的坐標分別為(0,1),
∴向上平移了1個單位,
則,,
則,故⑤正確.
故答案為:B.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在某地,人們發(fā)現(xiàn)某種蟋蟀1min,所叫次數(shù)x與當?shù)販囟萒之間的關(guān)系或為T=ax+b,下面是蟋蟀所叫次數(shù)與溫度變化情況對照表:
蟋蟀叫的次數(shù)(x) | … | 84 | 98 | 119 | … |
溫度(℃)T | … | 15 | 17 | 20 | … |
①根據(jù)表中的數(shù)據(jù)確定a、b的值.
②如果蟋蟀1min叫63次,那么該地當時的溫度約為多少攝氏度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某湖上風景區(qū)有兩個觀望點A,C和兩個度假村B、D;度假村D在C正西方向,度假村B在C的南偏東方向,度假村B到兩個觀望點的距離都等于2km.
(1)在圖中標出A、B、C、D的位置,并寫出道路CD與CB的夾角.
(2)如果度假村D到C是直公路,長為1km,D到A是環(huán)湖路,度假村B到兩個觀望點的總路程等于度假村D到兩個觀望點的總路程.求出環(huán)湖路的長.
(3)根據(jù)題目中的條件,能夠判定嗎?若能,請寫出判斷過程;若不能,請你添加一個條件,判定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知DB∥AC,E是AC的中點,DB=AE,連結(jié)AD、BE.
(1)求證:四邊形DBCE是平行四邊形;
(2)若要使四邊形ADBE是矩形,則△ABC應(yīng)滿足什么條件?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市移動通訊公司開設(shè)了兩種通訊業(yè)務(wù),A類是固定用戶:先繳50元月租費,然后每通話1分鐘再付話費0.4元;B類是“神州行”用戶:使用者不繳月租費,每通話1分鐘付話費0.6元(這里均指市內(nèi)通話)。如果一個月內(nèi)通話時間為x分鐘,分別設(shè)A類和B類兩種通訊方式的費用為y元和y元,
(1)寫出y、y與x之間的函數(shù)關(guān)系式。
(2)一個月內(nèi)通話多少分鐘,用戶選擇A類合算?B類呢?
(3)若某人預(yù)計使用話費150元,他應(yīng)選擇哪種方式合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,AC是⊙O的直徑,D為⊙O上一點,過D作⊙O的切線交BA的延長線于P,且DP⊥BP于P.若PD+PA=6,AB=6,則⊙O的直徑AC的長為( )
A. 5 B. 8 C. 10 D. 12
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為的正方形的邊長增加,得到一個邊長為的正方形.在圖1的基礎(chǔ)上,某同學(xué)設(shè)計了一個解釋驗證的方案(詳見方案1)
方案1.如圖2,用兩種不同的方式表示邊長為的正方形的面積.
方式1:
方式2:
因此,
(1)請模仿方案1,在圖1的基礎(chǔ)上再設(shè)計一種方案,用以解釋驗證;
(2)如圖3,在邊長為的正方形紙片上剪掉邊長為的正方形,請在此基礎(chǔ)上再設(shè)計一個方案用以解釋驗證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線,DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com