【題目】如圖,四邊形ABCD中,∠ABC=90°,AB=4,BC=3,CD=12,AD=13.求四邊形ABCD的面積.
【答案】36
【解析】
連接AC,在直角三角形ABC中,由AB及BC的長(zhǎng),利用勾股定理求出AC的長(zhǎng),再由AD及CD的長(zhǎng),利用勾股定理的逆定理得到三角形ACD為直角三角形,根據(jù)四邊形ABCD的面積=直角三角形ABC的面積+直角三角形ACD的面積,即可求出四邊形的面積.
連接AC,如圖所示:
∵∠B=90°,∴△ABC為直角三角形,
又AB=4,BC=3,
∴根據(jù)勾股定理得:AC==5,
又AD=13,CD=12,
∴AD2=132=169,CD2+AC2=122+52=144+25=169,
∴CD2+AC2=AD2,
∴△ACD為直角三角形,∠ACD=90°,
則S四邊形ABCD=S△ABC+S△ACD=ABBC+ACCD=×3×4+×12×5=36.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校與圖書(shū)館在冋一條筆直道路上,甲從學(xué)校去圖書(shū)館,乙從圖書(shū)館回學(xué)校,甲、乙兩人都勻速步行且同時(shí)出發(fā),乙先到達(dá)日的地.兩人之間的距離y(米)與時(shí)間t(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)根據(jù)圖象信息,當(dāng)t= 分鐘時(shí)甲乙兩人相遇,乙的速度為 米/分鐘;
(2)求點(diǎn)A的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖所示的方式疊放在一起(其中,,;).
(1)①若,則的度數(shù)為_____________;
②若,則的度數(shù)為_____________.
(2)由(1)猜想與的數(shù)量關(guān)系,并說(shuō)明理由.
(3)當(dāng)且點(diǎn)E在直線(xiàn)AC的上方時(shí),這兩塊三角尺是否存在一組邊互相平行?若存在,請(qǐng)寫(xiě)出角度所有可能的值(不必說(shuō)明理由);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為6的正方形ABCD內(nèi)部有兩個(gè)大小相同的長(zhǎng)方形AEFG、HMCN,HM與EF相交于點(diǎn)P,HN與GF相交于點(diǎn)Q,AG=CM=x,AE=CN=y.
(1)用含有x、y的代數(shù)式表示長(zhǎng)方形AEFG與長(zhǎng)方形HMCN重疊部分的面積S四邊形HPFQ,并求出x應(yīng)滿(mǎn)足的條件;
(2)當(dāng)AG=AE,EF=2PE時(shí),
①AG的長(zhǎng)為_______;
②四邊形AEFG旋轉(zhuǎn)后能與四邊形HMCN重合,請(qǐng)指出該圖形所在平面內(nèi)能夠作為旋轉(zhuǎn)中心的所有點(diǎn),并分別說(shuō)明如何旋轉(zhuǎn)的.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
垂直于同一直線(xiàn)的兩條直線(xiàn)互相平行;的平方根是;若一個(gè)角的兩邊與另一個(gè)角的兩邊互相垂直,且其中一個(gè)角是45°,則另一個(gè)角為45°或135°;④若是的整數(shù)部分,是不等式的最大整數(shù)解,則關(guān)于,方程的自然數(shù)解共有3對(duì);⑤在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別為(2,0),(0,1),將線(xiàn)段AB平移至,的位置,則.其中真命題的個(gè)數(shù)是( 。
A.2B.3C.4D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)O在直線(xiàn)AB上,OD是∠AOC的平分線(xiàn),OE是∠BOC的平分線(xiàn).
(1)圖中與∠AOD互余的角是 ,與∠COE互補(bǔ)的角是 ;(把符合條件的角都寫(xiě)出來(lái))
(2)求∠DOE的度數(shù);
(3)如果∠BOF=51°34',∠COE=38°43',請(qǐng)畫(huà)出射線(xiàn)OF,求∠COF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)庫(kù)存若干套桌椅,準(zhǔn)備修理后支援貧困山區(qū)學(xué)!,F(xiàn)有甲、乙兩木工組,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲單獨(dú)修完這些桌椅比乙單獨(dú)修完多用20天,學(xué)校每天付甲組80元修理費(fèi),付乙組120元修理費(fèi)。
(1)該中學(xué)庫(kù)存多少套桌椅?
(2)在修理過(guò)程中,學(xué)校要派一名工人進(jìn)行質(zhì)量監(jiān)督,學(xué)校負(fù)擔(dān)他每天10元生活補(bǔ)助費(fèi),現(xiàn)有三種修理方案:a、由甲單獨(dú)修理;b、由乙單獨(dú)修理;c、甲、乙合作同時(shí)修理。你認(rèn)為哪種方案省時(shí)又省錢(qián)?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,四邊形ABCD是菱形,點(diǎn)M、N分別在AB、AD上,且BM=DN,MG∥AD,NF∥AB,點(diǎn)F、G分別在BC、CD上,MG與NF相交于點(diǎn)E;
(1)如圖,求證:四邊形AMEN是菱形;
(2)如圖,連接AC,在不添加任何輔助線(xiàn)的情況下,請(qǐng)直接寫(xiě)出面積相等的四邊形;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】C點(diǎn)的坐標(biāo)為(4,4),A為y軸負(fù)半軸上一動(dòng)點(diǎn),連CA,CB⊥CA交x軸于B.
(1)求OB﹣OA的值;
(2)E在x軸正半軸上,D在y軸負(fù)半軸上,∠DCE=45°,轉(zhuǎn)動(dòng)∠DCE,求線(xiàn)段BE、DE和AD之間的數(shù)量關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com