【題目】(2015南寧)如圖,AB是⊙O的直徑,AB=8,點M在⊙O上,∠MAB=20°,N是弧MB的中點,P是直徑AB上的一動點.若MN=1,則PMN周長的最小值為(  )

A. 4 B. 5 C. 6 D. 7

【答案】B

【解析】試題分析:作N關(guān)于AB的對稱點N′,連接MN′NN′,ON′,ON,由兩點之間線段最短可知MN′AB的交點P′即為△PMN周長的最小時的點,根據(jù)N是弧MB的中點可知∠A=∠NOB=∠MON=20°,故可得出∠MON′=60°,故△MON′為等邊三角形,由此可得出結(jié)論.

解:作N關(guān)于AB的對稱點N′,連接MN′,NN′,ON′ON

∵N關(guān)于AB的對稱點N′,

∴MN′AB的交點P′即為△PMN周長的最小時的點,

∵N是弧MB的中點,

∴∠A=∠NOB=∠MON=20°

∴∠MON′=60°,

∴△MON′為等邊三角形,

∴MN′=OM=4,

∴△PMN周長的最小值為4+1=5

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個平臺遠處有一座古塔,小明在平臺底部的點C處測得古塔頂部B的仰角為60°,在平臺上的點E處測得古塔頂部的仰角為30°.已知平臺的縱截面為矩形DCFE,DE=2米,DC=20米,求古塔AB的高(結(jié)果保留根號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來霧霾天氣給人們的生活帶來很大影響,空氣質(zhì)量問題倍受人們關(guān)注,某單位計劃在室內(nèi)安裝空氣凈化裝置,需購進A,B兩種設(shè)備,每臺B種設(shè)備價格比每臺A種設(shè)備價格多700元,花3000元購買A種設(shè)備和花7200元購買B種設(shè)備的數(shù)量相同.

1)求A種、B種設(shè)備每臺各多少元?

2)根據(jù)單位實際情況,需購進AB兩種設(shè)備共20臺,總費用不高于17000元,求A種設(shè)備至少要購買多少臺?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是一個正方體的表面展開圖,請回答下列問題:

1)與面B、面C相對的面分別是      ;

2)若Aa3+a2b+3,B=﹣a2b+a3Ca31,D=﹣a2b+15),且相對兩個面所表示的代數(shù)式的和都相等,求E、F代表的代數(shù)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某校初二學(xué)生每周上網(wǎng)的時間,兩位學(xué)生進行了抽樣調(diào)查.小麗調(diào)查了初二電腦愛好者中40名學(xué)生每周上網(wǎng)的時間;小杰從全校400名初二學(xué)生中隨機抽取了40名學(xué)生,調(diào)查了每周上網(wǎng)的時間.小麗與小杰整理各自樣本數(shù)據(jù),如下表所示.

時間段(小時/周)

小麗抽樣(人數(shù))

小杰抽樣(人數(shù))

0~1

6

22

1~2

10

10

2~3

16

6

3~4

8

2

1)你認(rèn)為哪位學(xué)生抽取的樣本不合理?請說明理由.

2)專家建議每周上網(wǎng)2小時以上(含2小時)的學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時間,估計該校全體初二學(xué)生中有多少名學(xué)生應(yīng)適當(dāng)減少上網(wǎng)的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E

1)證明:四邊形ACDE是平行四邊形;

2)若AC=8,BD=6,求△ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:等腰三角形ABC的面積為30,AB=AC= 10,則底邊BC的長度為_________ m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若數(shù) a,b 在數(shù)軸上的位置如圖所示,則下列各式中一定成立的是(

A. ab B. a+b>0 C. aba+b D. |a|+|b|<|a+b|

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點都在網(wǎng)格點上,其中,C點坐標(biāo)為(1,2).

1)寫出點AB的坐標(biāo):

2)將△ABC先向左平移2個單位長度,再向上平移1個單位長度,得到△A′B′C′,則A′B′C′的三個頂點坐標(biāo)分別是A′(,)、B′(,)、C′(,).

3△ABC的面積為

查看答案和解析>>

同步練習(xí)冊答案