【題目】知識改變世界,科技改變生活。導航設(shè)備的不斷更新方便了人們的出行。如圖,某校組織學生乘車到蒲江茶葉基地C地進行研學活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正東方向,且距A9.1千米,導航顯示車輛應(yīng)沿南偏東60°方向行駛至B地,再沿北偏東53°方向行駛一段距離才能到達C地,求BC兩地的距離(精確到個位)

(參考數(shù)據(jù)

【答案】5千米

【解析】

BDAC,設(shè)ADx,在RtABD中求得BD,在RtBCD中求得CD,由ACADCD建立關(guān)于x的方程,解之求得x的值,根據(jù)三角函數(shù)的定義即可得到結(jié)論.

解:如圖,作BDAC于點D,則∠DAB30°、∠DBC53°

設(shè)BDx,
RtABD中,AD
RtBCD中,CDBDtanDBCx·tan53° =x

ACADCD可得x=9.1

解得:x=

則在RtBCD中,BC=

BC兩地的距離約為5千米.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系內(nèi),拋物線與線段有兩個不同的交點,其中點,點.有下列結(jié)論:

①直線的解析式為;②方程有兩個不相等的實數(shù)根;③a的取值范圍是.

其中,正確結(jié)論的個數(shù)為(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將四邊形ABCD放在每個小正方形的邊長為1的網(wǎng)格中,點A.B、C、D均落在格點上.

(Ⅰ)計算AD2+DC2+CB2的值等于_____;

(Ⅱ)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡要說明畫圖方法(不要求證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】A,B兩家酒店規(guī)模相當,去年下半年的月盈利折線統(tǒng)計圖如圖所示.

1)要評價這兩家酒店7~12月的月盈利的平均水平,你選擇什么統(tǒng)計量?求出這個統(tǒng)計量;

2)已知A,B兩家酒店7~12月的月盈利的方差分別為1.073(平方萬元),0.54(平方萬元).根據(jù)所給的方差和你在(1)中所求的統(tǒng)計量,結(jié)合折線統(tǒng)計圖,你認為去年下半年哪家酒店經(jīng)營狀況較好?請簡述理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xoy中,直線k為常數(shù))與拋物線交于A,B兩點,且A點在軸右側(cè),P點的坐標為(0,4)連接PA,PB.(1)PAB的面積的最小值為____;(2)當時,=_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】新龜兔賽跑的故事:龜兔從同一地點同時出發(fā)后,兔子很快把烏龜遠遠甩在后頭.驕傲自滿的兔子覺得自己遙遙領(lǐng)先,就躺在路邊呼呼大睡起來.當它一覺醒來,發(fā)現(xiàn)烏龜已經(jīng)超過它,于是奮力直追,最后同時到達終點.用S1、S2分別表示烏龜和兔子賽跑的路程,t為賽跑時間,則下列圖象中與故事情節(jié)相吻合的是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】遵義市各校都在深入開展勞動教育,某校為了解七年級學生一學期參加課外勞動時間(單位:h)的情況,從該校七年級隨機抽查了部分學生進行問卷調(diào)查,并將調(diào)查結(jié)果繪制成如下不完整的頻數(shù)分布表和頻數(shù)分布直方圖.

課外勞動時間頻數(shù)分布表

勞動時間分組

頻數(shù)

頻率

 0t20

2

0.1

 20t40

4

m

 40t60

6

0.3

 60t80

a

0.25

 80t100

3

0.15

解答下列問題:

1)頻數(shù)分布表中a   m   ;將頻數(shù)分布直方圖補充完整;

2)若七年級共有學生400人,試估計該校七年級學生一學期課外勞動時間不少于60h的人數(shù);

3)已知課外勞動時間在60ht80h的男生人數(shù)為2人,其余為女生,現(xiàn)從該組中任選2人代表學校參加“全市中學生勞動體驗”演講比賽,請用樹狀圖或列表法求所選學生為11女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB6,∠ABD60°,點E從點A出發(fā),以每秒2個單位長度的速度沿邊AB運動,到點B停止運動.過點EEFBDAD于點F,將AEF繞點E順時針旋轉(zhuǎn)得到GEH,且點G落在線段EF上,設(shè)點E的運動時間為t(秒)(0t3).

1)若t1,求GEH的面積;

2)若點G在∠ABD的平分線上,求BE的長;

3)設(shè)GEHABD重疊部分的面積為T,用含t的式子表示T,并直接寫出當0t3T的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,給出了格點(頂點是網(wǎng)格線的交點)和直線l及點O.

1)畫出關(guān)于直線l對稱的

2)連接OA,將OA繞點O順時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后的線段;

3)在旋轉(zhuǎn)過程中,當OA有交點時,旋轉(zhuǎn)角的取值范圍為________.

查看答案和解析>>

同步練習冊答案