【題目】某商場購進了一批、兩種型號的智能掃地機器人,這兩種智能掃地機器人的進購數(shù)量、進價、售價如表所示:
類型 | 進購數(shù)量(個) | 進價(元/個) | 售價(元/個) |
型 | 20 | 1800 | 2300 |
型 | 40 | 1500 | ? |
若該商場計劃全部銷售完這批智能掃地機器人的總利潤不少于32000元,則型智能掃地機器人的銷售單價至少是多少元?
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(閱讀材料)
我們知道“在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大”,利用此規(guī)律,我們可以求數(shù)軸上兩個點之間的距離,具體方法是:用右邊的數(shù)減去左邊的數(shù)的差就是表示這兩個數(shù)的兩點之間的距離.若點表示的數(shù)是,點表示的數(shù)是,點在點的右邊(即),則點,之間的距離為(即).
例如:若點表示的數(shù)是-6,點表示的數(shù)是-9,則線段.
(理解應(yīng)用)
(1)已知在數(shù)軸上,點表示的數(shù)是-2020,點表示的數(shù)是2020,求線段的長;
(拓展應(yīng)用)
如圖,數(shù)軸上有三個點,點表示的數(shù)是-2,點表示的數(shù)是3,點表示的數(shù)是.
(2)當(dāng),,三個點中,其中一個點是另外兩個點所連線段的中點時,求的值;
(3)在點左側(cè)是否存在一點,使點到點,點的距離和為19?若存在,求出點表示的數(shù):若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形ABCD的邊長為6,E、F、P分別是AB、CD、AD上的點(均不與正方形頂點重合)且PE=PF,PE⊥PF.
(1)求證:AE+DF=6
(2)設(shè)AE=,五邊形EBCFP的面積為,求與的函數(shù)關(guān)系式,并求出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:中,,求證:.下面給出運用反證法證明的四個步驟:①∴,這與三角形內(nèi)角和為矛盾
②因此假設(shè)不成立.∴
③假設(shè)在中,
④由,得,即
這四個步驟正確的順序應(yīng)是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛汽車行駛時的耗油量為0.1升/千米,如圖是油箱剩余油量(升)關(guān)于加滿油后已行駛的路程(千米)的函數(shù)圖象.
(1)根據(jù)圖象,直接寫出汽車行駛400千米時,油箱內(nèi)的剩余油量,并計算加滿油時油箱的油量;
(2)求關(guān)于的函數(shù)關(guān)系式,并計算該汽車在剩余油量5升時,已行駛的路程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:點在直線上,點都在直線上(點在點的左側(cè)),連接,平分且
(1)如圖1,求證:
(2)如圖2,點為上一點,連接,若,求的度數(shù)
(3)在(2)的條件下,點在直線上,連接,且,若,求的度數(shù)(要求:在備用圖中畫出圖形后,再計算)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列代數(shù)式或方程解應(yīng)用題:
已知小明的年齡是歲,小紅的年齡比小明的年齡的倍小歲,小華的年齡比小紅的年齡大歲,求這三名同學(xué)的年齡的和.
小亮與小明從學(xué)校同時出發(fā)去看在首都體育館舉行的一場足球賽, 小亮每分鐘走,他走到足球場等了分鐘比賽才開始:小明每分鐘走,他走到足球場,比賽已經(jīng)開始了分鐘.問學(xué)校與足球場之間的距離有多遠(yuǎn)?
請根據(jù)圖中提供的信息,回答下列問題:
①一個水瓶與一個水杯分別是多少元?
②甲、乙兩家商場都銷售該水瓶和水杯,為了迎接新年,兩家商場都在搞促銷活動,甲商場規(guī)定:這兩種商品都打八折;乙商場規(guī)定:買一個水瓶贈送兩個水杯,單獨購買的水杯仍按原價銷售.若某單位想在一家商場買個水瓶和個水杯,請問選擇哪家商場更合算?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個由若干小正方形堆成的幾何體,它從正面看和從左面看的圖形如圖1所示.
這個幾何體可以是圖2中甲,乙,丙中的______;
這個幾何體最多由______個小正方體堆成,最少由______個小正方體堆成;
請在圖3中用陰影部分畫出符合最少情況時的一個從上面往下看得到的圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以的斜邊,直角邊為邊向外作等邊和,為的中點,,相交于點.若∠BAC=30°,下列結(jié)論:①;②四邊形為平行四邊形;③;④.其中正確結(jié)論的序號是______.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com