【題目】如圖,在正方形紙片ABCD中,對角線AC、BD交于點O,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合.展開后,折痕DE分別交AB、AC于點E、G.連接GF.下列結論:①∠AGD=112.5°;②AD:AE=2;③S△AGD=S△OGD;④四邊形AEFG是菱形;⑤BE=2 OG。其中正確結論的序號是______.
【答案】①④⑤
【解析】①根據正方形性質和折疊性質得出和,即可求解;
②根據直角三角形的直角邊小于斜邊,即可得出結論;
③根據角平分線的性質得出三角形的高相等,再分析底邊長即可;
④證明四條邊相等即可;
⑤由折疊的性質設進一步表示的長度,結合相似三角形進行求解即可.
因為在正方形紙片ABCD中,折疊正方形紙片ABCD,使AD落在BD上,點A恰好與BD上的點F重合,
所以
可求, 所以①正確,
因為tan∠AED=
因為AE=EF<BE,
所以
因為AD=AB,因此②錯.
因為AG=FG>OG,△AGD與△OGD同高,
所以 所以③錯.
根據題意可得:AE=EF,AG=FG,又因為EF∥AC,
所以∠FEG=∠AGE,又因為∠AEG=∠FEG,
所以∠AEG=∠AGE,所以AE=AG=EF=FG,
所以四邊形AEFG是菱形,因此④正確.
由折疊的性質設BF=EF=AE=1,則
由此可求,
因為EF∥AC,
所以△DOG∽△DFE,
所以
∴
在直角三角形BEF中,
所以△BEF是等腰直角三角形,同理可證△OFG是等腰直角三角形,
在等腰直角和等腰直角中,
所以BE=2OG.因此⑤正確.
故答案為:①④⑤.
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經過A(﹣1,0)、C(0,﹣3)兩點,與x軸交于另一點B.
(1)求這條拋物線所對應的函數關系式;
(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某商店購進一批單價為16元的日用品,銷售一段時間后,為了獲得更多利潤,商店決定提高銷售價格.經試驗發(fā)現(xiàn),若按每件20元的價格銷售時,每月能賣360件;若按每件25元的價格銷售時,每月能賣210件.假定每月銷售件數y(件)是價格x(元/件)的一次函數.
(1)試求y與x之間的關系式;
(2)在商品不積壓,且不考慮其它因素的條件下,問銷售價格定為多少時,才能使每月獲得最大利潤?每月的最大利潤是多少(總利潤=總收入﹣總成本)?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列變形中:
①由方程=2去分母,得x﹣12=10;
②由方程x=兩邊同除以,得x=1;
③由方程6x﹣4=x+4移項,得7x=0;
④由方程2﹣兩邊同乘以6,得12﹣x﹣5=3(x+3).
錯誤變形的個數是( 。﹤.
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知數軸上兩點A,B對應的數分別為﹣1、3,點P為數軸上一動點.
(1)若點P到點A、點B的距離相等,寫出點P對應的數 ;
(2)若點P到點A,B的距離之和為6,那么點P對應的數 ;
(3)點A,B分別以2個單位長度/分、1個單位長度/分的速度向右運動,同時P點以6個單位長度/分的速度從O點向左運動.當遇到A時,點P立刻以同樣的速度向右運動,并不停地往返于點A與點B之間,求當點A與點B重合時,點P所經過的總路程是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】“囧”(jiǒng)是一個風靡網絡的流行詞,像一個人臉郁悶的神情.如圖所示,一張邊長為8cm的正方形的紙片,剪去兩個一樣的小直角三角形和一個長方形得到一個“囧”字圖案(陰影部分).設剪去的小長方形長和寬分別為xcm、ycm,剪去的兩個小直角三角形的兩直角邊長也分別為xcm、ycm.
(1)用含有x、y的代數式表示圖中“囧”(陰影部分)的面積.
(2)當x=8,y=2時,求此時“囧”(陰影部分)的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是( )
A.a>0
B.當x≥1時,y隨x的增大而增大
C.c<0
D.當﹣1<x<3時,y>0
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在解決數學問題的過程中,我們常用到“分類討論”的數學思想,下面是運用分類討論的數學思想解決問題的過程,請仔細閱讀,并解答題目后提出的(探究).
(提出問題)兩個有理數a、b滿足a、b同號,求的值.
(解決問題)解:由a、b同號,可知a、b有兩種可能:①當a,b都正數;②當a,b都是負數.①若a、b都是正數,即a>0,b>0,有|a|=a,|b|=b,則==1+1=2;②若a、b都是負數,即a<0,b<0,有|a|=﹣a,|b|=﹣b,則==(﹣1)+(﹣1)=﹣2,所以的值為2或﹣2.
(探究)請根據上面的解題思路解答下面的問題:
(1)兩個有理數a、b滿足a、b異號,求的值;
(2)已知|a|=3,|b|=7,且a<b,求a+b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在△ABC中,AB=AC,點D在邊BC所在的直線上,過點D作DF∥AC交直線AB于點F,DE∥AB交直線AC于點E.
(1)當點D在邊BC上時,如圖①,求證:DE+DF=AC.
(2)當點D在邊BC的延長線上時,如圖②;當點D在邊BC的反向延長線上時,如圖③,請分別寫出圖②、圖③中DE,DF,AC之間的數量關系,不需要證明.
(3)若AC=6,DE=4,則DF= .
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com