【題目】為了加強學生的安全意識,某校組織了學生參加安全知識競賽,從中抽取了部分學生成績進行統(tǒng)計(滿分100分,學生成績?nèi)≌麛?shù)),并按照成績從低到高分成、、、、五個小組,繪制統(tǒng)計圖如下(未完成),解答下列問題:

1)樣本容量為______,頻數(shù)分布直方圖中______;

2)扇形統(tǒng)計圖中小組所對應的扇形圓心角為______度,并補全頻數(shù)分布直方圖;

3)若成績在80分以上(不含80分)為優(yōu)秀,全校共有2000名學生,估計成績優(yōu)秀的學生有多少名?

【答案】1200,16;(2126,補全頻數(shù)分布直方圖見解析;(3)估計成績優(yōu)秀的學生有940.

【解析】

1)根據(jù)B組的頻數(shù)以及百分比,即可求得總人數(shù),然后根據(jù)百分比的意義求得a的值;

2)利用360°乘以對應的百分比,即可求解;

3)利用全?側藬(shù)乘以對應的百分比,即可求解.

1)學生總數(shù):(人),則;

故答案為:200;16

2,如圖所示,

3)樣本兩組的百分數(shù)的和為,

(名)

答:估計成績優(yōu)秀的學生有940.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有、三個居民小區(qū)的位置成三角形,現(xiàn)決定在三個小區(qū)之間修建一個購物超市,使超市到三個小區(qū)的距離相等,則超市應建在(

A.在∠A、∠B兩內(nèi)角平分線的交點處

B.ACBC兩邊垂直平分線的交點處

C.AC、BC兩邊高線的交點處

D.ACBC兩邊中線的交點處

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中國的茶文化源遠流長,根據(jù)制作方法和茶多酚氧化(發(fā)酵)程度的不同,可分為六大類:綠茶(不發(fā)酵)、白茶(輕微發(fā)酵)、黃茶(輕發(fā)酵)、青茶(半發(fā)酵)、黑茶(后發(fā)酵)、紅茶(全發(fā)酵).春節(jié)將至,為款待親朋好友,小葉去茶莊選購茶葉.茶莊有碧螺春、龍井兩種綠茶,一種青茶——武夷巖茶及一種黃茶——銀針出售.

(1)隨機購買一種茶葉,是綠茶的概率為________;

(2)隨機購買兩種茶葉,求一種是綠茶、一種是銀針的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】臺風是一種自然災害,它以臺風中心為圓心在周圍數(shù)十千米范圍內(nèi)形成氣旋風暴,有極強的破壞力,如圖,據(jù)氣象觀測、距某城市的正南方向千米處有一臺風中心,其中心最大風力為級,每遠離臺風中心千米風力就會減弱一級,該臺風中心現(xiàn)正以千米/時的速度沿北偏東方向往移動,且臺風中心風力不變,若城市所受風力達到或超過四級,則稱為受臺風影響

該城市是否會受到這交臺風的影響?請說明理由;

若會受到臺風影響,那么臺風影響該城市持續(xù)時間有多少?

該城市受到臺風影響的最大風力為幾級?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,A是雙曲線在第一象限的分支上的一個動點,連接AO并延長與這個雙曲線的另一分支交于點B,以AB為底邊作等腰直角三角形ABC,使得點C位于第四象限。

1)點C與原點O的最短距離是________;

2)沒點C的坐標為(,點A在運動的過程中,yx的變化而變化,y關于x的函數(shù)關系式為________。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=5cmBC=10cm,動點M從點D出發(fā),按折線DCBAD方向以3cm/s的速度運動,動點N從點D出發(fā),按折線DABCD方向以2cm/s的速度運動.點E在線段BC上,且BE=1cm,若M、N兩點同時從點D出發(fā),到第一次相遇時停止運動.

1)求經(jīng)過幾秒鐘M、N兩點停止運動?

2)求點A、E、M、N構成平行四邊形時,M、N兩點運動的時間;

3)設運動時間為ts),用含字母t的代數(shù)式表示EMN的面積Scm2).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,對于點M和圖形W,若圖形W上存在一點N(點M,N可以重合),使得點M與點N關于一條經(jīng)過原點的直線l對稱,則稱點M與圖形W中心軸對稱

對于圖形和圖形,若圖形和圖形分別存在點M和點N(點M,N可以重合),使得點M與點N關于一條經(jīng)過原點的直線l對稱,則稱圖形和圖形中心軸對稱的。

特別地,對于點M和點N,若存在一條經(jīng)過原點的直線l,使得點M與點N關于直線l對稱,則稱點M和點N中心軸對稱的。

1)如圖1,在正方形ABCD中,點,點,

①下列四個點,,中,與點A中心軸對稱的是________;

②點E在射線OB上,若點E與正方形ABCD中心軸對稱的,求點E的橫坐標的取值范圍;

2)四邊形GHJK的四個頂點的坐標分別為,,,,一次函數(shù)圖象與x軸交于點M,與y軸交于點N,若線段與四邊形GHJK中心軸對稱的,直接寫出b的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=﹣x+10與x軸、y軸分別交于點B,C,點A的坐標為(8,0),P(x,y)是直線y=﹣x+10在第一象限內(nèi)一個動點.

(1)求△OPA的面積S與x的函數(shù)關系式,并寫出自變量的x的取值范圍;

(2)當△OPA的面積為10時,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,若二次函數(shù)的圖象與x軸交于點A(-2,0),B(3,0)兩,點A關于正比例函數(shù)的圖象的對稱點為C。

(1)求b、c的值;

(2)證明:點C 在所求的二次函數(shù)的圖象上;

(3)如圖,過點B作DBx軸交正比例函數(shù)的圖象于點D,連結AC,交正比例函數(shù)的圖象于點E,連結AD、CD。如果動點P從點A沿線段AD方向以每秒2個單位的速度向點D運動,同時動點Q從點D沿線段DC方向以每秒1個單位的速度向點C運動,當其中一個到達終點時,另一個隨之停止運動,連結PQ、QE、PE,設運動時間為t秒,是否存在某一時刻,使PE平分APQ,同時QE平分PQC,若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案