【題目】平面直角坐標(biāo)系xOy中,對(duì)于點(diǎn)M和圖形W,若圖形W上存在一點(diǎn)N(點(diǎn)M,N可以重合),使得點(diǎn)M與點(diǎn)N關(guān)于一條經(jīng)過(guò)原點(diǎn)的直線l對(duì)稱,則稱點(diǎn)M與圖形W是“中心軸對(duì)稱”的
對(duì)于圖形和圖形,若圖形和圖形分別存在點(diǎn)M和點(diǎn)N(點(diǎn)M,N可以重合),使得點(diǎn)M與點(diǎn)N關(guān)于一條經(jīng)過(guò)原點(diǎn)的直線l對(duì)稱,則稱圖形和圖形是“中心軸對(duì)稱”的。
特別地,對(duì)于點(diǎn)M和點(diǎn)N,若存在一條經(jīng)過(guò)原點(diǎn)的直線l,使得點(diǎn)M與點(diǎn)N關(guān)于直線l對(duì)稱,則稱點(diǎn)M和點(diǎn)N是“中心軸對(duì)稱”的。
(1)如圖1,在正方形ABCD中,點(diǎn),點(diǎn),
①下列四個(gè)點(diǎn),,,中,與點(diǎn)A是“中心軸對(duì)稱”的是________;
②點(diǎn)E在射線OB上,若點(diǎn)E與正方形ABCD是“中心軸對(duì)稱”的,求點(diǎn)E的橫坐標(biāo)的取值范圍;
(2)四邊形GHJK的四個(gè)頂點(diǎn)的坐標(biāo)分別為,,,,一次函數(shù)圖象與x軸交于點(diǎn)M,與y軸交于點(diǎn)N,若線段與四邊形GHJK是“中心軸對(duì)稱”的,直接寫出b的取值范圍。
【答案】(1)①P1,P4;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.
【解析】
(1)①根據(jù)畫出圖形,根據(jù)“中心軸對(duì)稱”的定義即可判斷.
②以O為圓心,OA為半徑畫弧交射線OB于E,以O為圓心,OC為半徑畫弧交射線OB于F.求出點(diǎn)E,點(diǎn)F的坐標(biāo)即可判斷.
(2)如圖3中,設(shè)GK交x軸于P.求出兩種特殊位置的b的值即可判斷:當(dāng)一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)G(-2,2)時(shí),2=-2+b,b=2+2,當(dāng)一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)P(-2,0)時(shí),0=-2+b,b=2,觀察圖象結(jié)合圖形W1和圖形W2是“中心軸對(duì)稱”的定義可知,當(dāng)2≤b≤2+2時(shí),線段MN與四邊形GHJK是“中心軸對(duì)稱”的.再根據(jù)對(duì)稱性,求出直線與y軸的負(fù)半軸相交時(shí)b的范圍即可.
解:(1)如圖1中,
①∵OA=1,OP1=1,OP4=1,
∴P1,P4與點(diǎn)A是“中心軸對(duì)稱”的,
故答案為P1,P4.
②如圖2中,
以O為圓心,OA為半徑畫弧交射線OB于E,以O為圓心,OC為半徑畫弧交射線OB于F.
∵在正方形ABCD中,點(diǎn)A(1,0),點(diǎn)C(2,1),
∴點(diǎn)B(1,1),
∵點(diǎn)E在射線OB上,
∴設(shè)點(diǎn)E的坐標(biāo)是(x,y),
則x=y,
即點(diǎn)E坐標(biāo)是(x,x),
∵點(diǎn)E與正方形ABCD是“中心軸對(duì)稱”的,
∴當(dāng)點(diǎn)E與點(diǎn)A對(duì)稱時(shí),則OE=OA=1,
過(guò)點(diǎn)E作EH⊥x軸于點(diǎn)H,則OH2+EH2=OE2,
∴x2+x2=12,
解得x=,
∴點(diǎn)E的橫坐標(biāo)xE=,
同理可求點(diǎn):F(,),
∵E(,),F(,),
∴觀察圖象可知滿足條件的點(diǎn)E的橫坐標(biāo)xE的取值范圍:≤xE≤.
(2)如圖3中,設(shè)GK交x軸于P.
當(dāng)一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)G(-2,2)時(shí),2=-2+b,b=2+2,
當(dāng)一次函數(shù)y=x+b經(jīng)過(guò)點(diǎn)P(-2,0)時(shí),0=-2+b,b=2,
觀察圖象結(jié)合圖形W1和圖形W2是“中心軸對(duì)稱”的定義可知,當(dāng)2≤b≤2+2時(shí),線段MN與四邊形GHJK是“中心軸對(duì)稱”的.
根據(jù)對(duì)稱性可知:當(dāng)-2-2≤b≤-2時(shí),線段MN與四邊形GHJK是“中心軸對(duì)稱”的.
綜上所述,滿足條件的b的取值范圍:2≤b≤2+2或-2-2≤b≤-2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠第一季度的電費(fèi)為元,水費(fèi)比電費(fèi)的2倍多40元。第二季度電費(fèi)比第一季度節(jié)約了25%,水費(fèi)比第一季度多支出了25%。問(wèn)該工廠第一季度、第二季度的水電費(fèi)為多少元?第二季度的水電費(fèi)與第一季度相比是超支還是節(jié)約了?超支或節(jié)約了多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了加強(qiáng)學(xué)生的安全意識(shí),某校組織了學(xué)生參加安全知識(shí)競(jìng)賽,從中抽取了部分學(xué)生成績(jī)進(jìn)行統(tǒng)計(jì)(滿分100分,學(xué)生成績(jī)?nèi)≌麛?shù)),并按照成績(jī)從低到高分成、、、、五個(gè)小組,繪制統(tǒng)計(jì)圖如下(未完成),解答下列問(wèn)題:
(1)樣本容量為______,頻數(shù)分布直方圖中______;
(2)扇形統(tǒng)計(jì)圖中小組所對(duì)應(yīng)的扇形圓心角為______度,并補(bǔ)全頻數(shù)分布直方圖;
(3)若成績(jī)?cè)?/span>80分以上(不含80分)為優(yōu)秀,全校共有2000名學(xué)生,估計(jì)成績(jī)優(yōu)秀的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)P在函數(shù)的圖象上,過(guò)P作直線軸于點(diǎn)A,交直線于點(diǎn)M,過(guò)M作直線軸于點(diǎn)B.交函數(shù)的圖象于點(diǎn)Q。
(1)若點(diǎn)P的橫坐標(biāo)為1,寫出點(diǎn)P的縱坐標(biāo),以及點(diǎn)M的坐標(biāo);
(2)若點(diǎn)P的橫坐標(biāo)為t,
①求點(diǎn)Q的坐標(biāo)(用含t的式子表示)
②直接寫出線段PQ的長(zhǎng)(用含t的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC繞點(diǎn)A按順時(shí)針?lè)较蛐D(zhuǎn)得到的.連接BE、CF相交于點(diǎn)D.
(1)求證:BE=CF.
(2)當(dāng)四邊形ACDE為菱形時(shí),求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題:
(1)3.587-(-5)+(-5)+(+7)-(+3)-(+1.587);
(2)(-1)5×{[-4÷(-2)2+(-1.25)×(-0.4)]÷(-)-32}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=mx2-6mx+5m與x軸交于A、B兩點(diǎn),以AB為直徑的⊙P經(jīng)過(guò)該拋物線的頂點(diǎn)C,直線l∥x軸,交該拋物線于M、N兩點(diǎn),交⊙P與E、F兩點(diǎn),若EF=2,則MN的長(zhǎng)為( )
A.2 B.4 C.5 D.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD的邊BC在x軸上,點(diǎn)A(a,4)和D分別在反比函數(shù)y=-和y=(m>0)的圖象上.
(1)當(dāng)AB=BC時(shí),求m的值。
(2)連結(jié)OA,OD.當(dāng)OD平方∠AOC時(shí),求△AOD的周長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com