【題目】如圖,在平行四邊形ABCD中,AE⊥BC于E,AF⊥CD于F,且∠EAF=60°,BE=2cm,DF=3cm,試求平行四邊形ABCD的周長及面積.
【答案】20cm,cm2
【解析】由AE⊥BC,AF⊥CD,∠EAF=60°,根據(jù)四邊形的內(nèi)角和為360°,求得∠C;根據(jù)平行四邊形的對邊平行,可得∠B與∠C互補,即可求得∠B=60°,在直角三角形ABE中求得AB的長,同理求得AD的長,繼而求得平行四邊形ABCD的周長和面積.
∵AE⊥BC,AF⊥CD,∠EAF=60°,∴∠AEB=∠AEC=∠AFC=∠AFD=90°,∴∠C=120°.
∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD∥BC,∠B=∠D,∴∠B+∠C=180°,∴∠B=∠D=60°,∴∠BAE=∠FAD=30°.
∵BE=2cm,FD=3cm,∴AB=4cm,BC=AD=6cm,AF=3,∴ABCD周長=2(AB+BC)=2(4+6)=20 cm,SABCD=CDAF=4×3=12cm2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平行四邊形ABCD中,E,F(xiàn)是對角線BD上的兩點,如果添加一個條件,使△ABE ≌ △CDF,則添加的條件不能為( )
A. BE=DF B. BF=DE C. ∠1=∠2 D. AE=CF
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為慶祝元旦,某校組織大合唱匯演.初一(1)、(2)班學生準備統(tǒng)一購買服裝參加演出(一人買一套),這兩班共有學生104名學生參加演出,其中(1)班人數(shù)較少,不足50人.下面是某服裝廠給出的服裝價格表:
購買服裝的套數(shù) | 1﹣50套 | 51﹣100套 | 100套以上 |
每套服裝的價格 | 130元 | 110元 | 90元 |
經(jīng)估算,如果兩個班都以班為單位購買服裝,那么一共應(yīng)付12400元,問:
(1)兩班各有多少學生?
(2)如果兩班聯(lián)合起來,作為一個團體購買服裝,可省多少錢?
(3)如果(2)班不購買了,只有(1)班單獨購買,作為組織者的你將如何購買才最省錢?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了做好大課間活動,計劃用400元購買10件體育用品,備選體育用品及單價如下表(單位:元)
備選體育用品 | 籃球 | 排球 | 羽毛球拍 |
單價(元) | 50 | 40 | 25 |
(1)若400元全部用來購買籃球和羽毛球拍共10件,問籃球和羽毛球拍各購買多少件?
(2)若400元全部用來購買籃球、排球和羽毛球拍三種共10件,能實現(xiàn)嗎?(若能實現(xiàn)直接寫出一種答案即可,若不能請說明理由.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,D是△ABC內(nèi)一點,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分別是AB、AC、CD、BD的中點,則四邊形EFGH的周長是( )
A. 7 B. 8 C. 11 D. 10
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知點A(2,y1)、B(4,y2)都在反比例函數(shù)(k<0)的圖象上,則y1、y2的大小關(guān)系為( 。
A. y1>y2 B. y1<y2 C. y1=y2 D. 無法確定
【答案】B
【解析】試題∵當k<0時,y=在每個象限內(nèi),y隨x的增大而增大,∴y1<y2,故選B.
考點:反比例函數(shù)增減性.
【題型】單選題
【結(jié)束】
17
【題目】如圖, 在△ABC中,AC=3、AB=4、BC=5, P為BC上一動點,PG⊥AC于點G,PH⊥AB
于點H,M是GH的中點,P在運動過程中PM的最小值為( )
A. 2.4 B. 1.4
C. 1.3 D. 1.2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市舉辦“體彩杯”中學生籃球賽,初中男子組有市直學校的A、B、C三個隊和縣區(qū)學校的D,E,F(xiàn),G,H五個隊,如果從A,B,D,E四個隊與C,F(xiàn),G,H四個隊中個抽取一個隊進行首場比賽,那么首場比賽出場的兩個隊都是縣區(qū)學校隊的概率是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探索發(fā)現(xiàn):;; …根據(jù)你發(fā)現(xiàn)的規(guī)律,回答下列問題
(1) , ;
(2)利用你發(fā)現(xiàn)的規(guī)律計算: ;
(3)靈活利用規(guī)律解方程:
【答案】(1) , ;(2) (3)100.
【解析】(1)利用分式的運算和題中的運算規(guī)律求解;
(2)利用前面的運算規(guī)律得到原式=,然后合并后通分即可;
(3)利用前面的運算規(guī)律方程化為 ,然后合并后解分式方程即可.
(1),; ;
(2)原式== =;
(3)
,
,
經(jīng)檢驗是原方程的解.
點睛:本題考查了分式的運算和解分式方程:熟練掌握解分式方程的步驟:①去分母;②求出整式方程的解;③檢驗;④得出結(jié)論.理解分式的計算規(guī)律:是解答本題的關(guān)鍵.
【題型】解答題
【結(jié)束】
26
【題目】如圖,已知,A(0,6),B(-4.5,0),C(3,0),D為B點關(guān)于AC的對稱點,反比例函數(shù)y= 的圖象經(jīng)過D點.
(1)點
(2)求此反比例函數(shù)的解析式;
(3)已知在y=的圖象(x>0)上一點N,y軸正半軸上一點M,且四邊形ABMN是平行四邊形,求M點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com