【題目】若關(guān)于y的一元二次方程ky2﹣4y﹣3=3y+4有實根,則k的取值范圍是(
A.k>﹣
B.k≥﹣ 且k≠0
C.k≥﹣
D.k> 且k≠0

【答案】B
【解析】解:整理方程得:ky2﹣7y﹣7=0

由題意知k≠0,方程有實數(shù)根.

∴△=b2﹣4ac=49+28k≥0

∴k≥﹣ 且k≠0.

故選B.

【考點精析】本題主要考查了一元二次方程的定義和求根公式的相關(guān)知識點,需要掌握只有一個未知數(shù),并且未知數(shù)的項的最高系數(shù)為2的方程為一元二次方程;根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實數(shù)根3、當(dāng)△<0時,一元二次方程沒有實數(shù)根才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在筆直的鐵路上A、B兩點相距25kmC、D為兩村莊,DA=10km,CB=15km,DAABA,CBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應(yīng)建在距A多遠(yuǎn)處?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線相交于點O,且ABAD,過OOEBDBC于點E.CDE的周長為10,則ABAD的值是(  )

A. 10

B. 15

C. 25

D. 30

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線 lx 軸, y 軸分別交于 M,N 兩點,且 OM=ON=3.

(1)求這條直線的函數(shù)表達(dá)式;

(2)Rt△ ABC 與直線 l 在同一個平面直角坐標(biāo)系內(nèi),其中∠ABC=90°,AC= 2A(1,0),B(3,0),將△ABC 沿 x 軸向左平移,當(dāng)點 C 落在直線 l 上時,求線段 AC 掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某運輸公司用10輛相同的汽車將一批蘋果運到外地,每輛汽車能裝8噸甲種蘋果,或10噸乙種蘋果,或11噸丙種蘋果.公司規(guī)定每輛車只能裝同一種蘋果,而且必須滿載.已知公司運送了甲、乙、丙三種蘋果共100噸,且每種蘋果不少于一車.

(1)設(shè)用x輛車裝甲種蘋果,y輛車裝乙種蘋果,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;

(2)若運送三種蘋果所獲利潤的情況如下表所示:

設(shè)此次運輸?shù)睦麧櫈?/span>W(萬元),問:如何安排車輛分配方案才能使運輸利潤W最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在平面直角坐標(biāo)系中,已知點A(a,0),B(b,0),C(2,7),連接 AC,交y軸于 D,且,

1)求點D的坐標(biāo).

2)如圖 2,y軸上是否存在一點P,使得△ACP的面積與△ABC的面積相等?若存在,求點P的坐標(biāo),若不存在,說明理由.

3)如圖 3,若 Q(m,n) x軸上方一點,且的面積為20,試說明:7m3n是否為定值,若為定值,請求出其值,若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義新運算:a*b=a(b﹣1),若a、b是關(guān)于一元二次方程x2﹣x+ m=0的兩實數(shù)根,則b*b﹣a*a的值為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊥BC,DC⊥BC,垂足分別為B、C,設(shè)AB=4,DC=1,BC=4.

(1)求線段AD的長.
(2)在線段BC上是否存在點P,使△APD是等腰三角形?若存在,求出線段BP的長;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察如圖所示的長方體.

(1)用符號表示下列兩棱的位置關(guān)系:AB___A′B′,AA_____ABD′A_____D′C′,AD______BC.

(2) A′B′BC所在的直線是兩條不相交的直線,它們_____平行線.(填“是”或“不是”)

查看答案和解析>>

同步練習(xí)冊答案