【題目】已知:直線x軸、y軸分別相交于點(diǎn)A和點(diǎn)B,點(diǎn)C在線段AO.沿BC折疊后,點(diǎn)O恰好落在AB邊上點(diǎn)D處.

1)求出OC的長(zhǎng)?

2)點(diǎn)E、F是直線BC上的兩點(diǎn),若是以EF為斜邊的等腰直角三角形,求點(diǎn)F的坐標(biāo);

3)取AB的中點(diǎn)M,若點(diǎn)Py軸上,點(diǎn)Q在直線AB上,是否存在以C、MPQ為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出所有滿足條件的Q點(diǎn)坐標(biāo);若不存在,請(qǐng)說明理由.

【答案】1OC的長(zhǎng)為3;(2;(3

【解析】

1)先根據(jù)一次函數(shù)的解析式可得點(diǎn)A、B坐標(biāo),從而可得OA、OBAB的長(zhǎng),再根據(jù)折疊的性質(zhì)可得,然后在中,利用勾股定理即可得;

2)如圖,先由(1)得出點(diǎn)C坐標(biāo),再利用待定系數(shù)法可求出直線BC的函數(shù)解析式,從而可得出直線AG的函數(shù)解析式,然后聯(lián)立直線BC、AG的函數(shù)解析式可求出點(diǎn)G的坐標(biāo),從而可得AG的長(zhǎng),最后根據(jù)等腰直角三角形的性質(zhì)可得,由此建立方程求解即可得;

3)先求出點(diǎn)M坐標(biāo),再利用待定系數(shù)法可求出直線CM的函數(shù)解析式,設(shè)點(diǎn)Q的坐標(biāo)為,然后分MQ為所構(gòu)成的平行四邊形的邊和MQ為所構(gòu)成的平行四邊形的對(duì)角線兩種情況,分別根據(jù)平行四邊形的性質(zhì)、兩點(diǎn)之間的距離公式列出等式求解即可.

1)對(duì)于

當(dāng)時(shí),,解得,則點(diǎn)A坐標(biāo)為

當(dāng)時(shí),,則點(diǎn)B坐標(biāo)為

由折疊的性質(zhì)得:

,

設(shè),則

中,,即

解得

OC的長(zhǎng)為3;

2)由(1)可得:點(diǎn)C坐標(biāo)為

設(shè)直線BC的解析式為

將點(diǎn),代入得:,解得

則直線BC的解析式為

如圖,過點(diǎn)A作直線BC的垂線,交直線BC于點(diǎn)G

則可設(shè)直線AG的解析式為

將點(diǎn)代入得:,解得

則直線AG的解析式為

聯(lián)立,解得

即點(diǎn)G坐標(biāo)為

由兩點(diǎn)之間的距離公式得:

點(diǎn)E、F是直線BC上的兩點(diǎn),且是以EF為斜邊的等腰直角三角形

設(shè)點(diǎn)F的坐標(biāo)為

則有

整理得:

解得

當(dāng)時(shí),

當(dāng)時(shí),

則點(diǎn)F的坐標(biāo)為

3)由題意得:點(diǎn)M坐標(biāo)為,即

設(shè)直線CM的函數(shù)解析式為

將點(diǎn)、代入得:,解得

則直線CM的函數(shù)解析式為

因?yàn)辄c(diǎn)Q在直線AB

所以可設(shè)點(diǎn)Q的坐標(biāo)為

由平行四邊形的定義,分以下兩種情況:

MQ為所構(gòu)成的平行四邊形的邊,則

設(shè)直線CP的函數(shù)解析式為

將點(diǎn)代入得:,解得

則直線CP的函數(shù)解析式為

當(dāng)時(shí),,則此時(shí)點(diǎn)P坐標(biāo)為

由兩點(diǎn)之間的距離公式得:

解得

當(dāng)時(shí),

當(dāng)時(shí),

因此,此時(shí)點(diǎn)Q的坐標(biāo)為

MQ為所構(gòu)成的平行四邊形的對(duì)角線,則

設(shè)直線PQ的函數(shù)解析式為

將點(diǎn)代入得:,解得

則直線PQ的函數(shù)解析式為

當(dāng)時(shí),,則此時(shí)點(diǎn)P坐標(biāo)為

由兩點(diǎn)之間的距離公式得:

解得

當(dāng)時(shí),

此時(shí)點(diǎn)Q的坐標(biāo)為,點(diǎn)P的坐標(biāo)為,則MQ不是所構(gòu)成的平行四邊形的對(duì)角線,不符題設(shè),舍去

當(dāng)時(shí),

因此,此時(shí)點(diǎn)Q的坐標(biāo)為

綜上,所求的點(diǎn)Q的坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,一條生產(chǎn)線的流水線上依次有5個(gè)機(jī)器人,它們站立的位置在數(shù)軸上依次用點(diǎn)A1,A2,A3,A4A5表示.

1)若原點(diǎn)是零件的供應(yīng)點(diǎn),5個(gè)機(jī)器人分別到供應(yīng)點(diǎn)取貨的總路程是多少?

2)若將零件的供應(yīng)點(diǎn)改在A1,A3A5中的其中一處,并使得5個(gè)機(jī)器人分別到達(dá)供應(yīng)點(diǎn)取貨的總路程最短,你認(rèn)為應(yīng)該在哪個(gè)點(diǎn)上?通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是雙曲線上的點(diǎn),點(diǎn)A的坐標(biāo)是是線段AC的中點(diǎn).

k的值;

求點(diǎn)B的坐標(biāo);

的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC,∠C=90°,以點(diǎn)B為圓心,任意長(zhǎng)為半徑畫弧,分別交AB、BC于點(diǎn)M、N分別以點(diǎn)M、N為圓心,以大于MN的長(zhǎng)度為半徑畫弧兩弧相交于點(diǎn)P過點(diǎn)P作線段BD,AC于點(diǎn)D,過點(diǎn)DDE⊥AB于點(diǎn)E,則下列結(jié)論①CD=ED②∠ABD=∠ABC;③BC=BE④AE=BE中,一定正確的是(

A. B. ① ② ④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,正方形OABC的頂點(diǎn)B的坐標(biāo)為(33),直線CD交直線OA于點(diǎn)D,直線OE交線段ABE,且CD⊥OE,垂直為點(diǎn)F,若圖中陰影部分的面積是正方形OABC的面積的,則△OFC的周長(zhǎng)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,OABC是平行四邊形,對(duì)角線OB在軸正半軸上,位于第一象限的點(diǎn)A和第二象限的點(diǎn)C分別在雙曲線y=y=的一支上,分別過點(diǎn)A、Cx軸的垂線,垂足分別為MN,則有以下的結(jié)論:①;②陰影部分面積是k1+k2);③當(dāng)∠AOC=90°時(shí),|k1|=|k2|;④若OABC是菱形,則兩雙曲線既關(guān)于x軸對(duì)稱,也關(guān)于y軸對(duì)稱.其中正確的結(jié)論是(

A.①②B.①④C.③④D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)yax2bxc(a≠0)的圖象如圖所示,則下列結(jié)論:①當(dāng)x≥1時(shí),yx的增大而減。虎b2a0;x3是關(guān)于x的方程ax2bxc0(a≠0)的一個(gè)根;④4a2bc0.其中正確的是________(填序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)C在以AB為直徑的半圓上,AB=8,∠CBA=30°,點(diǎn)D在線段AB上運(yùn)動(dòng),點(diǎn)E與點(diǎn)D關(guān)于AC對(duì)稱,DF⊥DE于點(diǎn)D,并交EC的延長(zhǎng)線于點(diǎn)F.下列結(jié)論:

①CE=CF

線段EF的最小值為;

當(dāng)AD=2時(shí),EF與半圓相切;

若點(diǎn)F恰好落在B C上,則AD=

當(dāng)點(diǎn)D從點(diǎn)A運(yùn)動(dòng)到點(diǎn)B時(shí),線段EF掃過的面積是

其中正確結(jié)論的序號(hào)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩塊直角三角尺的直角頂點(diǎn)O疊放在一起.

1)如果∠BOD60°,那么∠AOC   ,如果∠AOC130°,那么∠BOD   

2)猜想∠AOC與∠BOD的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案