【題目】如圖1,平面直角坐標(biāo)系xoy中,A(-4,3),反比例函數(shù)的圖象分別交矩形ABOC的兩邊AC,BC于E,F(E,F不與A重合),沿著EF將矩形ABOC折疊使A,D重合.
(1)①如圖2,當(dāng)點(diǎn)D恰好在矩形ABOC的對(duì)角線BC上時(shí),求CE的長(zhǎng);
②若折疊后點(diǎn)D落在矩形ABOC內(nèi)(不包括邊界),求線段CE長(zhǎng)度的取值范圍.
(2)若折疊后,△ABD是等腰三角形,請(qǐng)直接寫出此時(shí)點(diǎn)D的坐標(biāo).
【答案】(1)①EC=2; ②;(2)點(diǎn)D的坐標(biāo)為或
【解析】
(1)①根據(jù)A(-4,3)和反比例函數(shù)圖象上點(diǎn)的特征可得E、F的坐標(biāo),從而可表示出AE、AF并求得,從而證得△AEF∽△ACB,利用相似三角形的性質(zhì)的折疊的性質(zhì)可推出,即可求得結(jié)果;
②當(dāng)D在BO上時(shí),由折疊的性質(zhì)和同角的余角相等證得△AEF∽△BAD,設(shè)AF=x,利用勾股定理可列出方程,解之得AF的長(zhǎng),進(jìn)而求出AE、CE的長(zhǎng),即可得出CE的取值范圍;
(2)由△ABD是等腰三角形,可得或,分情況進(jìn)行求解即可.
解:(1)①由題意得,,
∵,則,,
∴,,
∴,
∵由A(-4,3)得:,
∴,
∴,
又∵∠A=∠A,
∴△AEF∽△ACB,
∴∠AEF=∠ACB,
∴EF∥CB,
如圖2,連接AD交EF于點(diǎn)H ,
由折疊的性質(zhì)得:AH=DH,
∵D在BC上,
∴,則,
∴;
②由折疊得EF垂直平分AD,
∴,則,
又∵,
∴,
如圖,當(dāng)D落在BO上時(shí),∵,
∴△AEF∽△BAD,
∴,則,
∴,
設(shè)AF=x,則FB=3-x,FD=AF=x,
在Rt△BDF中,由勾股定理得:,
即,解得:,
∴,
∴,
∴,
∴,即折疊后點(diǎn)D落在矩形ABOC內(nèi)(不包括邊界),CE的取值范圍為;
(2)∵△ABD是等腰三角形,顯然,
∴或,
①當(dāng)時(shí),,
由(1)得:,
∴,
如圖,過點(diǎn)D作軸分別交AB、y軸于點(diǎn)M、N,
則,,
∴,,
∴△AEF∽△MBD,
∴,則,
∴,
∴,
∴點(diǎn)D的坐標(biāo)為;
②當(dāng)時(shí),如圖,過點(diǎn)D作軸分別交AB、y軸于點(diǎn)M、N,
則,,,
∴,
由(1)得,
∴△AEF∽△MAD,
∴,則,
設(shè),則,
在Rt△MAD中,由勾股定理得:,
即,解得:,
∴,,
∴,,
∴點(diǎn)D的坐標(biāo)為;
綜上所述,若折疊后,△ABD是等腰三角形,點(diǎn)D的坐標(biāo)為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】反比例函數(shù)y(x0)交等邊△OAB于C、D兩點(diǎn),邊長(zhǎng)為5,OC=3BD,則k的值( 。
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn).
(1)過點(diǎn)的直線交軸于點(diǎn),若點(diǎn)是第四象限內(nèi)拋物線上的一個(gè)動(dòng)點(diǎn),且在對(duì)稱軸的右側(cè),過點(diǎn)作軸交直線于點(diǎn),作軸交對(duì)稱軸于點(diǎn),以為鄰邊作矩形,當(dāng)矩形的周長(zhǎng)最大時(shí),在軸上有一動(dòng)點(diǎn),軸上有一動(dòng)點(diǎn),一動(dòng)點(diǎn)從線段的中點(diǎn)出發(fā)以每秒個(gè)單位的速度沿的路徑運(yùn)動(dòng)到點(diǎn),再沿線段以每秒個(gè)單位的速度運(yùn)動(dòng)到點(diǎn)處停止運(yùn)動(dòng),求動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間的最小值:
(2)如圖, 將繞點(diǎn)順時(shí)針旋轉(zhuǎn)至的位置, 點(diǎn)的對(duì)應(yīng)點(diǎn)分別為,且點(diǎn)恰好落在拋物線的對(duì)稱軸上,連接.點(diǎn)是軸上的一個(gè)動(dòng)點(diǎn),連接, 將沿直線翻折為, 是否存在點(diǎn), 使得為等腰三角形?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從寧?h到某市,可乘坐普通列車或高鐵,已知高鐵的行駛路程與普通列車的行駛路程之和是920千米,而普通列車的行駛路程是高鐵的行駛路程的1.3倍.
(1)求普通列車的行駛路程;
(2)若高鐵的平均速度(千米/時(shí))是普通列車的平均速度(千米/時(shí))的2.5倍,且乘坐高鐵所需時(shí)間比乘坐普通列車所需時(shí)間縮短3小時(shí),求高鐵的平均速度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明袋子中有個(gè)紅球,個(gè)綠球和個(gè)白球,這些球除顏色外無其他差別,
當(dāng)時(shí),從袋中隨機(jī)摸出個(gè)球,摸到紅球和摸到白球的可能性 (填“相同”或“不相同”);
從袋中隨機(jī)摸出一個(gè)球,記錄其顏色,然后放回,大量重復(fù)該實(shí)驗(yàn),發(fā)現(xiàn)摸到綠球的頻率穩(wěn)定于,則的值是 ;
在的情況下,如果一次摸出兩個(gè)球,請(qǐng)用樹狀圖或列表法求摸出的兩個(gè)球顏色不同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】電器商場(chǎng)銷售A、B兩種型號(hào)計(jì)算器,兩種計(jì)算器的進(jìn)貨價(jià)格分別為每臺(tái)30元、40元,商場(chǎng)銷售4臺(tái)A型號(hào)和2臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)80元;銷售6臺(tái)A型號(hào)和3臺(tái)B型號(hào)計(jì)算器,可獲利潤(rùn)120元.
(1)求商場(chǎng)銷售A、B兩種型號(hào)計(jì)算器的銷售價(jià)格分別是多少元?
(2)商場(chǎng)準(zhǔn)備用不多于2500元的資金購(gòu)進(jìn)A、B兩種型號(hào)計(jì)算器共70臺(tái),問最少需要購(gòu)進(jìn)A型號(hào)的計(jì)算器多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,3),作直線BC.動(dòng)點(diǎn)P在x軸上運(yùn)動(dòng),過點(diǎn)P作PM⊥x軸,交拋物線于點(diǎn)M,交直線BC于點(diǎn)N,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在線段OB上運(yùn)動(dòng)時(shí),求線段MN的最大值;
(3)是否存在點(diǎn)P,使得以點(diǎn)C、O、M、N為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)直接寫出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,過點(diǎn)A作AE⊥BC,垂足為E,連接DE,F為線段DE上一點(diǎn),且∠AFE=∠B
(1)求證:△ADF∽△DEC;
(2)若AB=8,AD=6,AF=4,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下列網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,點(diǎn)A、B、P、Q均為格點(diǎn).
(Ⅰ)線段AB的長(zhǎng)度等于__________;
(Ⅱ)點(diǎn)M、N是線段AB上的兩個(gè)動(dòng)點(diǎn)(M較靠近點(diǎn)B),且始終滿足,若點(diǎn)M、N運(yùn)動(dòng)恰好使四邊形MNPQ的周長(zhǎng)最小時(shí),請(qǐng)?jiān)诮o定的網(wǎng)格中用無刻度直尺畫出點(diǎn)M的位置,并簡(jiǎn)要說明你的作圖方法:__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com