【題目】如圖,在中,,DAC的中點,過點A作直線,過點D的直線EFBC的延長線于點E,交直線l于點F,連接AE、CF

1)求證:①;②

2)若,試判斷四邊形AFCE是什么特殊四邊形,并證明你的結(jié)論;

3)若,探索:是否存在這樣的能使四邊形AFCE成為正方形?若能,求出滿足條件時的的度數(shù);若不能,請說明理由.

【答案】1)①證明見解析;②證明見解析;(2)四邊形AFCE是矩形,證明見解析;(3)當EFAC,∠B=22.5°時,四邊形AFCE是正方形,證明見解析.

【解析】

1)①根據(jù)中點和平行即可找出條件證明全等.

②由全等的性質(zhì)可以證明出四邊形AFCE是平行四邊形,即可得到AE=FC

(2)根據(jù)可證明出△DCE為等邊三角形,進而得到AC=EF即可證明出四邊形AFCE是矩形.

(3)根據(jù)四邊形AFCE是平行四邊形,且EFAC,得到四邊形AFCE是菱形.由AC=BC,證出△DCE是等腰直角三角形即可得到AC=EF,進而證明出菱形AFCE是正方形.所以存在這樣的

1)①

AFBE,∴∠FAD=ECD,∠AFD=CED

AD=CD,∴△ADF≌△CDE

②由△ADF≌△CDE,∴AF=CE

AFBE,∴四邊形AFCE是平行四邊形,∴AE=FC

2)四邊形AFCE是矩形.

∵四邊形AFCE是平行四邊形,∴AD=DC,ED=DF

AC=BC,∴∠BAC=B=30°,∴∠ACE=60°

∵∠CDE=2B=60°,∴△DCE為等邊三角形,∴CD=ED,∴AC=EF,∴四邊形AFCE是矩形.

3)當EFAC,∠B=22.5°時,四邊形AFCE是正方形.

∵四邊形AFCE是平行四邊形,且EFAC,∴四邊形AFCE是菱形.

AC=BC,∴∠BAC=B=22.5°,∴∠DCE=2B=45°,∴△DCE是等腰直角三角形,即DC=DE,∴AC=EF,∴菱形AFCE是正方形.

即當EFAC,∠B=22.5°時,四邊形AFCE是正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,BDACAB=8,AC=,A=30°

1請求出線段AD的長度;

2請求出sin∠C的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】a是一個長為2 m、寬為2 n的長方形, 沿圖中虛線用剪刀均分成四塊小長方形, 然后按圖b的形狀拼成一個正方形。

(1)你認為圖b中的陰影部分的正方形的邊長等于__________________。

(2)請用兩種不同的方法求圖b中陰影部分的面積。

方法1___________________________ 方法2___________________________

(3)觀察圖b,你能寫出下列三個代數(shù)式之間的等量關(guān)系嗎?

代數(shù)式: m+n2 ,(m-n2mn

_______________________________________________________

(4)根據(jù)(3)題中的等量關(guān)系,解決如下問題:

a+b=7,ab=5,求(a-b2的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】殲-20(英文:Chengdu J-20,綽號:威龍,北約命名:Fire Fang)是我國自主研發(fā)的一款單座、雙發(fā)動機并具備高隱身性、高態(tài)勢感知、高機動性等能力的第五代戰(zhàn)斗機。

殲-20在機腹部位有一個主彈倉,機身兩側(cè)的起落架前方各有一個側(cè)彈倉。殲-20的側(cè)彈艙門為一片式結(jié)構(gòu),這個彈艙艙門向上開啟,彈艙內(nèi)滑軌的前端向外探出,使導(dǎo)彈頭部伸出艙外,再直接點火發(fā)射。

如圖是殲-20側(cè)彈艙內(nèi)部結(jié)構(gòu)圖,它的艙體橫截面是等腰梯形ABCDAD//BC,AB = CDBEAD,CFAD,側(cè)彈艙寬AE = 2.3米,艙底寬BC = 3.94米,艙頂與側(cè)彈艙門的夾角∠A = 53

1側(cè)彈艙門AB的長;

2艙頂AD與對角線BD的夾角的正切值.(結(jié)果精確到0.01參考數(shù)據(jù) , , ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)七年級有350名師生需要租車去野外進行拓展訓(xùn)練,現(xiàn)有AB兩種類型號的車可供選擇,已知1A型車和2B型車可載110人,2A型車和1B型車可載100人。

1A、B型車每輛可分別載多少人?

2)要始每輛車都恰好坐滿且正好運完這些師生,請問你有哪幾種設(shè)計租車方案,請一一列舉出來。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市數(shù)學(xué)調(diào)研小組對老師在講評試卷中學(xué)生參與的深度與廣度進行評價調(diào)查,其評價項目為“主動質(zhì)疑”、“獨立思考”、“專注聽講”、“講解題目”四項,該調(diào)研小組隨機抽取了若干名初中七年級學(xué)生的參與情況,繪制成如圖所示的頻數(shù)分布直方圖和扇形統(tǒng)計圖(均不完整),請根據(jù)圖中所給信息解答下列問題:

1)在這次評價中,一共抽查了______名學(xué)生;

2)請將頻數(shù)分布直方圖補充完整;

3)如果全市有40000名七年級學(xué)生,那么在試卷評講課中,“獨立思考”的七年級學(xué)生約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于實數(shù),定義兩種新運算“※”和“”: (其中為常數(shù),且,若對于平面直角坐標系中的點,有點的坐標,與之對應(yīng),則稱點的“衍生點”為點.例如:的“2衍生點”為,即

1)點的“3衍生點”的坐標為  

2)若點的“5衍生點” 的坐標為,求點的坐標;

3)若點的“衍生點”為點,且直線平行于軸,線段的長度為線段長度的3倍,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線 a≠0)的對稱軸為直線x=1,與x軸的一個交點坐標為(﹣1,0),其部分圖象如圖所示,下列結(jié)論:

①4acb2;

方程 的兩個根是x1=1,x2=3;

③3a+c0

y0時,x的取值范圍是﹣1≤x3

x0時,yx增大而增大

其中結(jié)論正確的個數(shù)是( 。

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(10分)已知ABC和ADE是等腰直角三角形,ACB=ADE=90°,點F為BE中點,連結(jié)DF、CF.

(1)如圖1, 當點D在AB上,點E在AC上,請直接寫出此時線段DF、CF的數(shù)量關(guān)系位置關(guān)系(不證明);

(2)如圖2,在(1)的條件下ADE繞點A順時針旋轉(zhuǎn)45°時,請你判斷此時(1)中的結(jié)論是否仍然成立,并證明你的判斷;

(3)如圖3,在(1)的條件下ADE繞點A順時針旋轉(zhuǎn)90°時,若AD=1,AC=,求此時線段CF的長(直接寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案