【題目】如圖,在△ABC中,BD⊥AC,AB=8,AC=,∠A=30°.
(1)請(qǐng)求出線段AD的長(zhǎng)度;
(2)請(qǐng)求出sin∠C的值.
【答案】(1);(2).
【解析】試題分析:(1)在Rt△ABD中,根據(jù)含30°角的直角三角形的性質(zhì)得出BD的長(zhǎng),然后根據(jù)勾股定理或銳角三角函數(shù)求出AD的長(zhǎng);
(2)根據(jù)CD=AC-AD求出CD的長(zhǎng),然后在Rt△CBD中,利用勾股定理求出BC的長(zhǎng),再根據(jù)三角函數(shù)的定義即可求出sin∠C的值.
試題解析:
解:(1)在Rt△ABD中,
∵∠ADB=90°,AB=8,∠A=30°,
∴BD=AB=4,AD=ABcos30°=4;
(2)∵AC=6,AD=4,
∴CD=AC﹣AD=2.
在Rt△CBD中,
∵∠CDB=90°,BD=4,CD=2,
∴BC==,
∴sin∠C===.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知△ABC中,AB=BC=1,∠ABC=90°,把一塊含30°角的直角三角板DEF的直角頂點(diǎn)D放在AC的中點(diǎn)上(直角三角板的短直角邊為DE,長(zhǎng)直角邊為DF),將直角三角板DEF繞D點(diǎn)按逆時(shí)針方向旋轉(zhuǎn).
(1)在圖1中,DE交邊AB于M,DF交邊BC于N,證明:DM=DN;
(2)在這一旋轉(zhuǎn)過程中,直角三角板DEF與△ABC的重疊部分為四邊形DMBN,請(qǐng)說(shuō)明四邊形DMBN的面積是否發(fā)生變化?若發(fā)生變化,請(qǐng)說(shuō)明是如何變化的?若不發(fā)生變化,求出其面積;
(3)繼續(xù)旋轉(zhuǎn)至如圖2的位置,延長(zhǎng)AB交DE于M,延長(zhǎng)BC交DF于N,DM=DN是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知反比例函數(shù) 與一次函數(shù)y=ax+b(a≠0)的圖象相交于點(diǎn)A(1,8)和B(4,m).
(1)分別求反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)過動(dòng)點(diǎn)P(n,0)且垂直于x軸的直線分別與反比例函數(shù)圖象和一次函數(shù)圖象交于C、D兩點(diǎn),當(dāng)點(diǎn)C位于點(diǎn)D下方時(shí),直接寫出n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,E為BC邊上一點(diǎn),DF⊥AE于F,BG⊥AE于G.
(1)求證:DF=BG+FG.
(2)連接FC,CG,若四邊形DCGF的面積為40,求FC的長(zhǎng).
(3)在(2)的條件下,若AG=7,P為FC的延長(zhǎng)線上任一點(diǎn),連PD、PG,直接寫出的值為___.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要使平行四邊形ABCD成為菱形,需添加的條件是( 。
A. AC=BD B. ∠1=∠2 C. ∠ABC=90° D. ∠1=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在一個(gè)長(zhǎng)方形操場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓形的花壇,若圓形的半徑為r米,廣場(chǎng)的長(zhǎng)為a米,寬為b米.
(1)請(qǐng)列式表示操場(chǎng)空地的面積;
(2)若休閑廣場(chǎng)的長(zhǎng)為 50米,寬為20米,圓形花壇的半徑為 3米,求操場(chǎng)空地的面積.(π取 3.14,計(jì)算結(jié)果保留 0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某初中要調(diào)查學(xué)校學(xué)生(總數(shù) 1000 人)雙休日課外閱讀情況,隨機(jī)調(diào)查了一部分學(xué)生,調(diào)查得 到的數(shù)據(jù)分別制成頻數(shù)直方圖(如圖 1)和扇形統(tǒng)計(jì)圖(如圖 2).
(1)請(qǐng)補(bǔ)全上述統(tǒng)計(jì)圖(直接填在圖中);
(2) 試確定這個(gè)樣本的中位數(shù)和眾數(shù);
(3)請(qǐng)估計(jì)該學(xué)校 1000 名學(xué)生雙休日課外閱讀時(shí)間不少于 4 小時(shí)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某新建小區(qū)要在一塊等邊三角形內(nèi)修建一個(gè)圓形花壇.
(1)要使花壇面積最大,請(qǐng)你用尺規(guī)畫出圓形花壇示意圖;(保留作圖痕跡,不寫做法)
(2)若這個(gè)等邊三角形的周長(zhǎng)為36米,請(qǐng)計(jì)算出花壇的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,D是AC的中點(diǎn),過點(diǎn)A作直線,過點(diǎn)D的直線EF交BC的延長(zhǎng)線于點(diǎn)E,交直線l于點(diǎn)F,連接AE、CF.
(1)求證:①≌;②;
(2)若,試判斷四邊形AFCE是什么特殊四邊形,并證明你的結(jié)論;
(3)若,探索:是否存在這樣的能使四邊形AFCE成為正方形?若能,求出滿足條件時(shí)的的度數(shù);若不能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com