【題目】如圖,在平行四邊形中,,,…,是的等分點(diǎn),連接并延長(zhǎng)交于點(diǎn),連接并延長(zhǎng)交于點(diǎn).
求證:;
設(shè)平行四邊形的面積是,若,求的值.
【答案】(1)詳見(jiàn)解析;(2)6.
【解析】
(1)根據(jù)對(duì)角線(xiàn)互相平分可以證明四邊形AP2CP(n-2)是平行四邊形,可得AE∥CP(n-2),根據(jù)平行線(xiàn)分線(xiàn)段成比例可得BE÷BC=DF÷CD,從而證明EF∥BD.
(2)根據(jù)同底不同高的三角形的面積相互間的關(guān)系可得S△ADF=1÷(n-2)S,S△ABE=1÷(n-2)S,即:S△CEF=[(n-4)÷(n-2)]2S,可得關(guān)于n的方程,解即可求得n的值.
證明:在平行四邊形中,、是的等分點(diǎn)
所以:
連接、,根據(jù)對(duì)角線(xiàn)互相平分可以證明四邊形是平行四邊形
故:,則(
同理:所以:
故:
故:.
設(shè)平行四邊形的面積為,則其余四邊形部分的面積為
又:即:
同理:
又:,故
即:,即:
故:
故:
解得:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)場(chǎng)要建一個(gè)飼養(yǎng)場(chǎng)(矩形ABCD)兩面靠現(xiàn)有墻(AD位置的墻最大可用長(zhǎng)度為27米,AB位置的墻最大可用長(zhǎng)度為15米),另兩邊用木欄圍成,中間也用木欄隔開(kāi),分成兩個(gè)場(chǎng)地及一處通道,并在如圖所示的三處各留1米寬的門(mén)(不用木欄).建成后木欄總長(zhǎng)45米.設(shè)飼養(yǎng)場(chǎng)(矩形ABCD)的一邊AB長(zhǎng)為x米.
(1)飼養(yǎng)場(chǎng)另一邊BC=____米(用含x的代數(shù)式表示).
(2)若飼養(yǎng)場(chǎng)的面積為180平方米,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)L經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)L,CE⊥直線(xiàn)L,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)組員小劉想,如果三個(gè)角不是直角,那結(jié)論是否會(huì)成立呢?如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)L上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
(3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:如圖③,過(guò)△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,AH是BC邊上的高,延長(zhǎng)HA交EG于點(diǎn)I,求證:I是EG的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,△ABC 中,∠A=90°,現(xiàn)要在 AC 邊上確定一點(diǎn) D,使點(diǎn) D到 BA、BC 的距離相等.
(1)請(qǐng)你按照要求,在圖上確定出點(diǎn) D 的位置(尺規(guī)作圖,不寫(xiě)作法,保留作圖痕跡);
(2)若 BC=10,AB=8,則 AC= ,AD= (直接寫(xiě)出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形于1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用x、y表示三角形的兩條直角邊(x>y),下列四個(gè)說(shuō)法:①,②,③,④。其中說(shuō)法正確的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一次函數(shù)y=kx+b(k≠0)的圖象經(jīng)過(guò)點(diǎn)A(2,-6),且與反比例函數(shù)y=-的圖象交于點(diǎn)B(a,4)
(1)求一次函數(shù)的解析式;
(2)將直線(xiàn)AB向上平移10個(gè)單位后得到直線(xiàn)l:y1=k1x+b1(k1≠0),l與反比例函數(shù)y2= 的圖象相交,求使y1<y2成立的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題情境:在綜合與實(shí)踐課上,同學(xué)們以“已知三角形三邊的長(zhǎng)度,求三角形面積”為主題開(kāi)展數(shù)學(xué)活動(dòng),小穎想到借助正方形網(wǎng)格解決問(wèn)題。圖1、圖2都是8×8的正方形網(wǎng)格,每個(gè)小正方形的邊長(zhǎng)均為1,每個(gè)小正方形的頂點(diǎn)稱(chēng)為格點(diǎn)。
操作發(fā)現(xiàn):小穎在圖1中畫(huà)出△ABC,其頂點(diǎn)A、B、C都是格點(diǎn),同時(shí)構(gòu)造正方形BDEF,使它的頂點(diǎn)都在格點(diǎn)上,且它的邊DE、EF分別經(jīng)過(guò)點(diǎn)C、A,她借助此圖求出了△ABC的面積。
(1)在圖1中,小穎所畫(huà)的△ABC的三邊長(zhǎng)分別是AB= ,BC= ,AC= ;△ABC的面積為 。
(2)請(qǐng)你根據(jù)小穎的思路,在圖2中以格點(diǎn)為頂點(diǎn)畫(huà)一個(gè)△DEF,使三角形三邊長(zhǎng)分別為2、、,并直接寫(xiě)出△DEF的面積= 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將一個(gè)等腰直角三角形按圖示方式依次翻折,若DE=a,則下列說(shuō)法正確的有(____)
①DC′平分∠BDE;②BC長(zhǎng)為;③△是等腰三角形;④△CED的周長(zhǎng)等于BC的長(zhǎng).
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下圖取材于我國(guó)古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長(zhǎng)直角邊為b,那么的值為______________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com