【題目】如圖,是的直徑,是上半圓的弦,過點(diǎn)作的切線交的延長線于點(diǎn),過點(diǎn)作切線的垂線,垂足為,且與交于點(diǎn),設(shè),的度數(shù)分別是.
(1)用含的代數(shù)式表示,并直接寫出的取值范圍;
(2)連接與交于點(diǎn),當(dāng)點(diǎn)是的中點(diǎn)時(shí),求,的值.
【答案】(1)β=90°-2α(0°<α<45°);(2)α=β=30°.
【解析】
試題分析:(1)首先證明∠DAE=2α,在Rt△ADE中,根據(jù)兩銳角互余,可知2α+β=90°,(0°<α<45°);
(2)連接OF交AC于O′,連接CF.只要證明四邊形AFCO是菱形,推出△AFO是等邊三角形即可解決問題;
試題解析:(1)連接OC.
∵DE是⊙O的切線,∴OC⊥DE,
∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,
∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,
∵∠D=90°,∴∠DAE+∠E=90°,
∴2α+β=90°(0°<α<45°),即β=90°-2α(0°<α<45°).
(2)連接OF交AC于O′,連接CF.
∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,
∴CF∥OA,∵AF∥OC,∴四邊形AFCO是平行四邊形,
∵OA=OC,∴四邊形AFCO是菱形,∴AF=AO=OF,
∴△AOF是等邊三角形,∴∠FAO=2α=60°,∴α=30°,
∵2α+β=90°,∴β=30°,∴α=β=30°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=4,AD=3,把矩形沿直線AC折疊,使點(diǎn)B落在點(diǎn)E處,AE交CD于點(diǎn)F,連接DE.
(1)求證:△DEC≌△EDA;
(2)求DF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線與坐標(biāo)軸交于A,B,C三點(diǎn),其中C(0,3),∠BAC的平分線AE交y軸于點(diǎn)D,交BC于點(diǎn)E,過點(diǎn)D的直線l與射線AC,AB分別交于點(diǎn)M,N.
(1)直接寫出a的值、點(diǎn)A的坐標(biāo)及拋物線的對(duì)稱軸;
(2)點(diǎn)P為拋物線的對(duì)稱軸上一動(dòng)點(diǎn),若△PAD為等腰三角形,求出點(diǎn)P的坐標(biāo);
(3)證明:當(dāng)直線l繞點(diǎn)D旋轉(zhuǎn)時(shí),均為定值,并求出該定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)七、八年級(jí)各選派10名選手參加學(xué)校舉辦的“愛我荊門”知識(shí)競賽,計(jì)分采用10分制,選手得分均為整數(shù),成績達(dá)到6分或6分以上為合格,達(dá)到9分或10分為優(yōu)秀.這次競賽后,七、八年級(jí)兩支代表隊(duì)選手成績分布的條形統(tǒng)計(jì)圖和成績統(tǒng)計(jì)分析表如下,其中七年級(jí)代表隊(duì)得6分、10分的選手人數(shù)分別為a,b.
隊(duì)別 | 平均分 | 中位數(shù) | 方差 | 合格率 | 優(yōu)秀率 |
七年級(jí) | 6.7 | m | 3.41 | 90% | n |
八年級(jí) | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)請(qǐng)依據(jù)圖表中的數(shù)據(jù),求a,b的值;
(2)直接寫出表中的m,n的值;
(3)有人說七年級(jí)的合格率、優(yōu)秀率均高于八年級(jí),所以七年級(jí)隊(duì)成績比八年級(jí)隊(duì)好,但也有人說八年級(jí)隊(duì)成績比七年級(jí)隊(duì)好.請(qǐng)你給出兩條支持八年級(jí)隊(duì)成績好的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( )
A.a3a=a3B.(﹣2a2)3=﹣6a5C.a5+a5=a10D.8a5b2÷2a3b=4a2b
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計(jì)劃購進(jìn)一批甲、乙兩種玩具,已知一件甲種玩具的進(jìn)價(jià)與一件乙種玩具的進(jìn)價(jià)的和為40元,用90元購進(jìn)甲種玩具的件數(shù)與用150元購進(jìn)乙種玩具的件數(shù)相同.
(1)求每件甲種、乙種玩具的進(jìn)價(jià)分別是多少元?
(2)商場計(jì)劃購進(jìn)甲、乙兩種玩具共48件,其中甲種玩具的件數(shù)少于乙種玩具的件數(shù),商場決定此次進(jìn)貨的總資金不超過1000元,求商場共有幾種進(jìn)貨方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列調(diào)查中.適合采取全面調(diào)查方式的是( )
A.了解某城市的空氣質(zhì)量的情況B.了解全國中學(xué)生的視力情況
C.了解某企業(yè)對(duì)應(yīng)聘人員進(jìn)行面試的情況D.了解某池塘中魚的數(shù)量的情況
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com