【題目】在四邊形ABCD中,對角線AC、BD相交于點(diǎn)O,設(shè)銳角∠AOB=α,將△DOC按逆時(shí)針方向旋轉(zhuǎn)得到△D′OC′(0°<旋轉(zhuǎn)角<90°)連接AC′、BD′,AC′與BD′相交于點(diǎn)M.
(1)、當(dāng)四邊形ABCD為矩形時(shí),如圖1.求證:△AOC′≌△BOD′.
(2)、當(dāng)四邊形ABCD為平行四邊形時(shí),設(shè)AC=kBD,如圖2.
①猜想此時(shí)△AOC′與△BOD′有何關(guān)系,證明你的猜想;
②探究AC′與BD′的數(shù)量關(guān)系以及∠AMB與α的大小關(guān)系,并給予證明.
【答案】(1)、證明過程見解析;(2)、①、△BOD′∽△AOC′;證明過程見解析式;②、AC′=kBD′,∠AMB=α,證明過程見解析.
【解析】
試題分析:(1)、根據(jù)矩形的性質(zhì)得出OA=OC=OB=OD,根據(jù)旋轉(zhuǎn)可得OD=OD′,OC=OC′,∠D′OD=∠C′OC,根據(jù)平角得出∠BOD′=∠AOC′,從而說明三角形全等;(2)、根據(jù)平行四邊形的性質(zhì)得出OB=OD,OA=OC,根據(jù)旋轉(zhuǎn)得出OD=OD′,OC=OC′,∠D′OD=∠C′OC,根據(jù)平角的性質(zhì)得出∠BOD′=∠AOC′,從而得出三角形相似;根據(jù)三角形相似的性質(zhì)進(jìn)行說明.
試題解析:(1)、在矩形ABCD中,∵AC=BD,OA=OC=AC,OB=OD=BD,
∴OA=OC=OB=OD,∵△D′OC′由△DOC旋轉(zhuǎn)得到,∴OD=OD′,OC=OC′,∠D′OD=∠C′OC,
∴OB=OD′=OA=OC′,∴180°-∠D′OD=180°-∠C′OC, 即∠BOD′=∠AOC′,
∴△BOD′≌△AOC′
(2)、①猜想:△BOD′∽△AOC′.
在平行四邊形ABCD中,OB=OD,OA=OC, ∵△D′OC′由△DOC旋轉(zhuǎn)得到,
∴OD=OD′,OC=OC′,∠D′OD=∠C′OC, ∴OB:OA=OD′:OC′,180°-∠D′OD=180°-∠C′OC,
∴∠BOD′=∠AOC′, ∴△BOD′∽△AOC′
②結(jié)論:AC′=kBD′,∠AMB=α
∵△BOD′∽△AOC′,
∴,即AC′=kBD′
設(shè)BD′與AC相交于點(diǎn)N,∵△BOD′∽△AOC′,∴∠OBM=∠OAM,
在△ANM與△BNO中,又∵∠ANM=∠BNO, ∴180°-∠OAC′-∠ANM=180°-∠OBD′-∠BNO,
即∠AMB=∠AOB=α.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】絕對值小于4.6的整數(shù)有( )
A. 10個(gè) B. 9個(gè) C. 8個(gè) D. 7個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A. 角是由兩條射線組成的圖形 B. 延長線段AB交直線m于點(diǎn)C,則AB+BC= AC
C. A、B兩點(diǎn)間的距離是線段AB D. 反向延長線段OA僅能得到射線AO
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某風(fēng)景區(qū)集體門票的收費(fèi)標(biāo)準(zhǔn)是:20人以內(nèi)(含20人)每人25元;超過20人的,超過的人數(shù)每人l0元.對有x人(x大于或等于20人)的旅行團(tuán),應(yīng)收多少門票費(fèi)?(用含x式子表示,并化簡).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com