【題目】某中學舉辦運動會,在1500米的項目中,參賽選手在200米的環(huán)形跑道上進行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有( 。

最快的選手到達終點時,最慢的選手還有15米未跑;

跑的最快的選手用時4'46″;

出發(fā)后最快的選手與最慢的選手相遇了兩次;

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時長.

A.1B.2C.3D.4

【答案】B

【解析】

根據(jù)題意和函數(shù)圖象可以判斷各個選項中的說法是否正確,本題得以解決.

由圖象可得:

出發(fā)后最快的選手與最慢的選手相遇了兩次,故選項正確.

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時短,故選項錯誤.

最快的選手到達終點時,最慢的選手還有2×200+15=415米未跑,故選項錯誤.

跑的最快的選手用時4'46″,故選項正確.

故選:B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】12分)如圖,在直角坐標系中,Rt△OAB的直角頂點Ax軸上,OA=4,AB=3.動點M從點A出發(fā),以每秒1個單位長度的速度,沿AO向終點O移動;同時點N從點O出發(fā),以每秒125個單位長度的速度,沿OB向終點B移動.當兩個動點運動了x秒(0x4)時,解答下列問題:

1)求點N的坐標(用含x的代數(shù)式表示);

2)設△OMN的面積是S,求Sx之間的函數(shù)表達式;當x為何值時,S有最大值?最大值是多少?

3)在兩個動點運動過程中,是否存在某一時刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E在矩形ABCD對角線AC上由AC運動,且BC2,∠ACB30°,連結EF,過點EEFDE,交BC于點F(當點F與點C重合時,點E也停止運動)

1)如圖1,當AC平分角∠DEF時,求AE的長度;

2)如圖2,連結DF,與AC交于點G,若DFAC時,求四邊形DEFC的面積;

3)若點EAC12兩部分時,求BFFC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,AOB是等腰直角三角形,∠AOB=90°,點A2,1.

1)求點B的坐標;

2)求經(jīng)過A、O、B三點的拋物線的函數(shù)表達式;

3)在(2)所求的拋物線上,是否存在一點P,使四邊形ABOP的面積最大?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近日,某中學舉辦了一次以弘揚傳統(tǒng)文化為主題的漢字聽寫比賽,初一和初二兩個年級各有600名學生參加,為了更好地了解本次比賽成績的分布情況,學校分別從兩個年級隨機抽取了若干名學生的成績作為樣本進行分析,下面是初二年級學生成績樣本的頻數(shù)分布表和頻數(shù)分布直方圖(不完整,每組分數(shù)段中的分數(shù)包括最低分,不包括最高分)

初二學生樣本成績頻數(shù)分布表

分組/

頻數(shù)

頻率

5060

2

6070

4

0.10

7080

0.20

8090

14

0.35

90100

合計

40

1.00

請根據(jù)所給信息,解答下列問題:

1)補全成績頻數(shù)分布表和頻數(shù)分布直方圖.

2)若初二學生成績樣本中8090分段的具體成績?yōu)椋?/span>

80 80 81.5 82 82.5 82.5 83 84.5 85 86.5 87 88 88.5 89

①根據(jù)上述信息,估計初二學生成績的中位數(shù)為__________

②若初一學生樣本成績的中位數(shù)為80,甲同學在比賽中得到了82分,在他所在的年級中位居275名,根據(jù)上述信息推斷甲同學所在年級為__________(選填初一或者初二).

③若成績在85分及以上均為優(yōu)秀,請你根據(jù)抽取的樣本數(shù)據(jù),估計初二年級學生中達到優(yōu)秀的學生人數(shù)為__________人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在中,上一點,以為圓心,長為半徑作圓,與相切于點,過點的延長線于點,.

(1)求證:的切線;

(2)若, ,的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形中,邊的中點,是射線上一點,以為邊作,使得,且,若,則的最小值為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了九年級學生對A,BC,D,E五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據(jù)調查結果繪制了如下的兩個統(tǒng)計圖.

請根據(jù)圖中所提供的信息,完成下列問題:

1)本次被調查的學生的人數(shù)為   

2)補全條形統(tǒng)計圖;

3)扇形統(tǒng)計圖中,C類所在扇形的圓心角的度數(shù)為   

4)若該中學有4000名學生,請估計該校喜愛C,D兩類校本課程的學生共有多少名.

查看答案和解析>>

同步練習冊答案