【題目】如圖,點(diǎn)E在矩形ABCD對(duì)角線AC上由AC運(yùn)動(dòng),且BC2,∠ACB30°,連結(jié)EF,過點(diǎn)EEFDE,交BC于點(diǎn)F(當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),點(diǎn)E也停止運(yùn)動(dòng))

1)如圖1,當(dāng)AC平分角∠DEF時(shí),求AE的長(zhǎng)度;

2)如圖2,連結(jié)DF,與AC交于點(diǎn)G,若DFAC時(shí),求四邊形DEFC的面積;

3)若點(diǎn)EAC12兩部分時(shí),求BFFC

【答案】13;(2;(3BFCF45BFCF81

【解析】

1)如圖1中,作DMACM,解直角三角形求出CM,EMAC即可解決問題;

2)解直角三角形求出DGFG,CG,利用相似三角形的性質(zhì)求出EG,根據(jù)S四邊形DEFCDFCE求解即可;

3)分兩種情形:如圖11中,若AECE12,作EMBCM,ENCDN.解直角三角形求出EN,DN,EM,再利用相似三角形的性質(zhì)求出MF即可解決問題.AECF21時(shí),同法可求.

解:(1)如圖1中,作DMACM,

∵四邊形ABCD是矩形,

∴∠B=∠BCD=∠ADC90°,ABCD,ADBC,

∵∠ACB30°,

ABCDBCtan30°=2AC2AB4,

RtCDM中,∵∠CMD90°,∠DCM60°,CD2,

∴∠CDM30°,

CMCD1,DMCM

∵∠DEF90°,EM平分∠DEF

∴∠DEMDEF45°,

EMDM

AEACEMCM3;

2)如圖2中,

DFAC,

∴∠DGC90°,

RtCDG中,∵CD2,∠DCG60°,

∴∠CDG30°,

CGCD1,DG

FGCGtan30°=,

∵∠FEG+DEG90°,∠EDG+DEG90°,

∴∠FEG=∠EDG,

∵∠EGF=∠DGE90°,

∴△EGF∽△DGE

,

,

EG1,

S四邊形DEFCDFCE×2×

3如圖11中,若AECE12,作EMBCM,ENCDN

ABCD2,AC4,AEEC12,

AE,EC

RtCEN中,∵∠ECN30°

CNEC,ENCN

DN2,

RtCEM中,∵∠ECM30°,

EMEC,CMEM,

DEEF,

∴∠DEF=∠NEM90°,

∴∠DEN=∠MEF,

∵∠END=∠EMF90°,

∴△END∽△EMF,

,可得MF

CFCMMF,BFCF

BFCF45;

AECF21時(shí),同法可得BFCF81

綜上所述,BFCF45BFCF81

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注.為了了解垃圾分類知識(shí)的普及情況,某校隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”、“了解”、“了解較少”、“不了解”四類,并將調(diào)查結(jié)果繪制成下面兩幅不完整的統(tǒng)計(jì)圖:

1)本次被調(diào)查的學(xué)生有 名,扇形統(tǒng)計(jì)圖中,

2)將條形統(tǒng)計(jì)圖剩余的部分補(bǔ)充完整(包括朱標(biāo)記的數(shù)據(jù))

3)估計(jì)該校名學(xué)生中“非常了解”與“了解”的人數(shù)和是多少.

4)某環(huán)保小隊(duì)有3名男生,1名女生,從中隨機(jī)抽取2人在全校做垃圾分類知識(shí)交流,求恰好抽到一男一女的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校開展“我最喜歡的一項(xiàng)體育社團(tuán)活動(dòng)”調(diào)查,若每名學(xué)生必選且只能選一項(xiàng),現(xiàn)隨機(jī)抽查了名學(xué)生,并將其結(jié)果繪制成如下不完整的統(tǒng)計(jì)圖,請(qǐng)解答下列問題:

1)求的值;

2)補(bǔ)全條形統(tǒng)計(jì)圖;

3)求“乒乓球”所對(duì)應(yīng)的扇形圓心角的度數(shù);

4)已知該校共有2400名學(xué)生,請(qǐng)你估計(jì)該校學(xué)生最喜歡籃球社團(tuán)活動(dòng)的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《鄭州市城市生活垃圾分類管理辦法》于201912月起施行,某社區(qū)要投放兩種垃圾桶,負(fù)責(zé)人小李調(diào)查發(fā)現(xiàn):

購買數(shù)量少于個(gè)

購買數(shù)量不少于個(gè)

原價(jià)銷售

以原價(jià)的折銷售

原價(jià)銷售

以原價(jià)的折銷售

若購買種垃圾桶個(gè),種垃圾桶個(gè),則共需要付款元;若購買種垃圾桶個(gè),種垃圾桶個(gè),則共需付款元.

1)求兩種垃圾桶的單價(jià)各為多少元?

2)若需要購買兩種垃圾桶共個(gè),且種垃圾桶不多于種垃圾桶數(shù)量的,如何購買使花費(fèi)最少?最少費(fèi)用為多少元?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,直徑AC與弦BD的交點(diǎn)為E,OBCDBHAC,垂足為H,且∠BFA=∠DBC

1)求證:BFO的切線;

2)若BH3,求AD的長(zhǎng)度;

3)若sinDAC,求△OBH的面積與四邊形OBCD的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B是圓O上的兩點(diǎn),∠AOB=120°,C是劣弧的中點(diǎn).

1)試判斷四邊形OACB的形狀,并說明理由;

2)延長(zhǎng)OAP,使得AP=OA,連接PC,若PC,求BC長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“足球運(yùn)球”是中考體育必考項(xiàng)目之一.蘭州市某學(xué)校為了解今年九年級(jí)學(xué)生足球運(yùn)球的掌握情況,隨機(jī)抽取部分九年級(jí)學(xué)生足球運(yùn)球的測(cè)試成績(jī)作為一個(gè)樣本,按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì),制成了如下不完整的統(tǒng)計(jì)圖.(說明:A級(jí):8分﹣10分,B級(jí):7分﹣7.9分,C級(jí):6分﹣6.9分,D級(jí):1分﹣5.9分)

根據(jù)所給信息,解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中,C對(duì)應(yīng)的扇形的圓心角是   度;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)所抽取學(xué)生的足球運(yùn)球測(cè)試成績(jī)的中位數(shù)會(huì)落在   等級(jí);

(4)該校九年級(jí)有300名學(xué)生,請(qǐng)估計(jì)足球運(yùn)球測(cè)試成績(jī)達(dá)到A級(jí)的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)舉辦運(yùn)動(dòng)會(huì),在1500米的項(xiàng)目中,參賽選手在200米的環(huán)形跑道上進(jìn)行,如圖記錄了跑的最快的一位選手與最慢的一位選手的跑步過程(最快的選手跑完了全程),其中x表示最快的選手的跑步時(shí)間,y表示這兩位選手之間的距離,現(xiàn)有以下4種說法,正確的有(  )

最快的選手到達(dá)終點(diǎn)時(shí),最慢的選手還有15米未跑;

跑的最快的選手用時(shí)4'46″;

出發(fā)后最快的選手與最慢的選手相遇了兩次;

出發(fā)后最快的選手與最慢的選手第一次相遇比第二次相遇的用時(shí)長(zhǎng).

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,拋物線軸的一個(gè)交點(diǎn)為點(diǎn),與軸的交點(diǎn)為點(diǎn),拋物線的對(duì)稱軸軸交于點(diǎn),與線段交于點(diǎn),點(diǎn)是對(duì)稱軸上一動(dòng)點(diǎn).

1)點(diǎn)的坐標(biāo)是________,點(diǎn)的坐標(biāo)是________;

2)是否存在點(diǎn),使得相似?若存在,請(qǐng)求出點(diǎn)的坐標(biāo),若不存在,請(qǐng)說明理由;

3)如圖2,拋物線的對(duì)稱軸向右平移與線段交于點(diǎn),與拋物線交于點(diǎn),當(dāng)四邊形是平行四邊形且周長(zhǎng)最大時(shí),求出點(diǎn)的橫坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案