【題目】下面是小明設計的“作角的平分線”的尺規(guī)作圖的過程.
已知:如圖1,.
求作:射線,使它平分.
作法:如圖2,
①以點為圓心,任意長為半徑作弧,交于點,交于點;
②分別以點,為圓心,以大于的同樣長為半徑作弧,兩弧交于點;
③作射線.
所以射線就是所求作的射線.
根據(jù)小明設計的尺規(guī)作圖的過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接,.
在和中,
∴≌( )(填推理的依據(jù)).
∴ (全等三角形的 相等).
即射線平分(角平分線定義).
科目:初中數(shù)學 來源: 題型:
【題目】某服裝廠計劃購進某種布料做服裝,已知米布料能做件上衣,米布料能做件褲子.
(1)一件上衣的用料是一條褲子用料的多少倍;
(2)這種布料是按匹購買的,每匹布料是將這種厚度為布料卷在直徑為的圓柱形軸上,卷完布后的圓柱直徑為D=20cm,其形狀和尺寸如圖所示,為使一匹布料所做的上衣和褲子剛好配成套,應分別用多少米的布料生產上衣和褲子(π取3)?
(3)在(2)的條件下,一件上衣用料1米,服裝廠要生產1000套,則需采購這樣的布料多少匹?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,∠C=90°,
(1)若a=4,b=3,則c=_______;
(2)若a=24,c=30,則b=_______;
(3)若BC=11,AB=61,則AC=_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點,點E、F分別在AC、BC邊上運動(點E不與點A、C重合),且保持AE=CF,連接DE,DF,EF.在此運動變化的過程中,有下列結論:
①△DFE是等腰直角三角形;
②四邊形CEDF不可能為正方形;
③四邊形CEDF的面積隨點E位置的改變而發(fā)生變化;
④點C到線段EF的最大距離為 .
其中正確結論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:已知兩直線,L1:y=k1x+b1,L2:y=k2x+b2,
若L1⊥L2,則有k1k2=﹣1,根據(jù)以上結論解答下列各題:
(1)已知直線y=2x+1與直線y=kx﹣1垂直,求k的值;
(2)若一條直線經過A(2,3),且與y=﹣x+3垂直,求這條直線所對應的一次函數(shù)的關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,,三點在數(shù)軸上對應的位置如圖如示,其中點對應的數(shù)為2,,.
(1)點對應的數(shù)是________,點對應的數(shù)是________;
(2)動點,分別同時從,兩點出發(fā),分別以每秒8個單位和3個單位的速度沿數(shù)軸正方向運動.點為的中點,點在上,且,設運動時間為.
①請直接用含的代數(shù)式表示點,對應的數(shù);
②當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點P是直線DB上一個動點,連接AP,作PE⊥AP交BC所在的直線于點E.
(1)如圖1,點P在BD的延長線上,PE⊥EC,AD=1,直接寫出PE的長;
(2)點P在線段BD上(不與B,D重合),依題意,將圖2補全,求證:PA=PE;
(3)點P在DB的延長線上,依題意,將圖3補全,并判斷PA=PE是否仍然成立.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A為⊙O外一點,連結OA交⊙O于P,AB為⊙O的切線,B為切點,AP=5㎝,AB= ㎝,則劣弧 與AB,AP所圍成的陰影的面積是.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】探究:
如圖①,在△ABC中,點D、E、F分別在邊AB、AC、CB上,且DE∥BC,EF∥AB,若∠ABC=65°,求∠DEF的度數(shù).請將下面的解答過程補充完整,并填空(理由或數(shù)學式):
解:∵DE∥BC( )
∴∠DEF= ( )
∵EF∥AB
∴ =∠ABC( )
∴∠DEF=∠ABC( )
∵∠ABC=65°
∴∠DEF=
應用:
如圖②,在△ABC中,點D、E、F分別在邊AB、AC、BC的延長線上,且DE∥BC,EF∥AB,若∠ABC=β,則∠DEF的大小為 (用含β的代數(shù)式表示).
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com