【題目】在△ABC中,AB=BC,∠ABC=90°.以AB為斜邊作等腰直角三角形ADB.點P是直線DB上一個動點,連接AP,作PE⊥AP交BC所在的直線于點E.
(1)如圖1,點P在BD的延長線上,PE⊥EC,AD=1,直接寫出PE的長;
(2)點P在線段BD上(不與B,D重合),依題意,將圖2補全,求證:PA=PE;
(3)點P在DB的延長線上,依題意,將圖3補全,并判斷PA=PE是否仍然成立.
【答案】(1); (2)證明見解析;(3)證明見解析.
【解析】
(1)根據(jù)等腰直角三角形的性質(zhì)得到∠ABP=45°,根據(jù)勾股定理得到AB==,推出四邊形ABEP是矩形,得到四邊形ABEP是正方形,于是得到結論;(2)根據(jù)等腰直角三角形的性質(zhì)得到∠ADB=90°,∠DAB=∠DBA=45°,求得∠PBN=45°過P作PM⊥AB于點M,過P作PN⊥BC于點N,于是得到PM=PN,∠BPN=45°根據(jù)全等三角形的性質(zhì)即可得到結論;
(3)根據(jù)等腰直角三角形的性質(zhì)得到∠ABD=45°,得到∠PBN=45°,∠ABC=90°,過P作PM⊥AB于點M,過P作PN⊥BC于點N,得到四邊形BMPN是矩形,推出四邊形BMPN是正方形,得到PM=PN,根據(jù)全等三角形的性質(zhì)即可得到結論.
(1)∵AD=DB=1,∠ADB=90°,
∴∠ABP=45°,AB==,
∵PE⊥AP,AB⊥BC,
∴PA∥EC,
∴PA⊥AB,
∴四邊形ABEP是矩形,
∵∠ABP=45°,
∴PA=AB,
∴四邊形ABEP是正方形,
∴PE=AB=
(2)∵△ABC和△ADB是等腰直角三角形,
∴∠ADB=90°,∠DAB=∠DBA=45°,
∴∠PBN=45°
∴PE⊥AP,∠DAP=∠BPE=90°-∠DPA,
∵∠PAM=45°-∠DAP,∠PEN=45°-∠BPE,
∴∠PAM=∠PEN,
過P作PM⊥AB于點M,過P作PN⊥BC于點N,
則PM=PN,∠BPN=45°,
在△APM和△EPN中,
,
∴△APM≌△EPN,
∴PA=PE;
(3)∵△ABC和△ADB是等腰直角三角形,
∴∠ABD=45°,
∴∠PBN=45°,∠ABC=90°,
過P作PM⊥AB于點M,過P作PN⊥BC于點N,
則四邊形BMPN是矩形,
∵∠NBP=45°,
∴四邊形BMPN是正方形,
∴PM=PN,
∵AB⊥BC,
∴∠BAN=∠APN,
∵AP⊥PE,
∴∠APN=∠E,
∴∠BAP=∠E,
在△AMP與△ENP中,
,
∴△AMP≌△ENP,
∴AP=PE.
科目:初中數(shù)學 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標有數(shù)字﹣2,﹣1,1,4的小球,它們的形狀、大小、質(zhì)地等完全相同,小強先從盒子里隨機取出一個小球,記下數(shù)字為a;放回盒子搖勻后,再由小華隨機取出一個小球,記下數(shù)字為b.
(1)用列表法或畫樹狀圖表示出(a,b)的所有可能出現(xiàn)的結果;
(2)求小強、小華各取一次小球所確定的點(a,b)落在二次函數(shù)y=x2的圖象上的概率;
(3)求小強、小華各取一次小球所確定的數(shù)a,b滿足直線y=ax+b經(jīng)過一、二、三象限的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=4,∠BAD的平分線與BC的延長線交于點E,與DC交于點F,且點F為邊DC的中點,DG⊥AE,垂足為G,若DG=1,則AE的長為( )
A.
B.
C.4
D.8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小明設計的“作角的平分線”的尺規(guī)作圖的過程.
已知:如圖1,.
求作:射線,使它平分.
作法:如圖2,
①以點為圓心,任意長為半徑作弧,交于點,交于點;
②分別以點,為圓心,以大于的同樣長為半徑作弧,兩弧交于點;
③作射線.
所以射線就是所求作的射線.
根據(jù)小明設計的尺規(guī)作圖的過程,
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接,.
在和中,
∴≌( )(填推理的依據(jù)).
∴ (全等三角形的 相等).
即射線平分(角平分線定義).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF為正三角形,點E、F分別在菱形的邊BC、CD上滑動,且E、F不與B、C、D重合.
(1)證明不論E、F在BC.CD上如何滑動,總有BE=CF;
(2)當點E、F在BC.CD上滑動時,分別探討四邊形AECF的面積和△CEF的周長是否發(fā)生變化?如果不變,求出這個定值;如果變化,求出最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個密閉不透明的盒子里有若干個白球,在不允許將球倒出來數(shù)的情況下,為估計白球數(shù),小剛向其中放入8個黑球搖勻后,從中隨意摸出一個球記下顏色,再把它放回盒中,不斷重復這一過程,共摸球100次,其中20次摸到黑球,你估計盒中大約有白球( )
A.20個
B.28個
C.36個
D.32個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,AC=3,BC=4,若以A為旋轉中心,將其按順時針方向旋轉60°到△AB'C'位置,則B點經(jīng)過的路線長為( )
A.π
B.π
C.π
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解答下面的問題:
(1)如果a2+a=3,求a2+a+2015的值.
(2)已知a﹣b=﹣3,求3(b﹣a)2﹣5a+5b+5的值.
(3)已知a2+2ab=﹣3,ab﹣b2=﹣5,求4a2+ab+b2的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市對教師試卷講評課中學生參與的深度和廣度進行評價,其評價項目為主動質(zhì)疑、獨立思考、專注聽講、講解題目四項.評價組隨機抽取了若干名初中生的參與情況,繪制了如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中所給的信息解答下列問題:
(1)這次評價中,一共抽查了名學生;
(2)請將條形統(tǒng)計圖補充完整;
(3)如果全市有16萬初中學生,那么在試卷講評課中,“獨立思考”的學生約有多少萬人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com