【題目】如圖1,將一個(gè)量角器與一張等邊三角形(△ABC)紙片放置成軸對(duì)稱圖形,CD⊥AB,垂足為D,半圓(量角器)的圓心與點(diǎn)D重合,此時(shí),測(cè)得頂點(diǎn)C到量角器最高點(diǎn)的距離CE=2cm,將量角器沿DC方向平移1cm,半圓(量角器)恰與△ABC的邊AC,BC相切,如圖2,則AB的長(zhǎng)為__________cm.
【答案】
【解析】
如圖,設(shè)圖(2)中半圓的圓心為O,與BC的切點(diǎn)為M,連接OM,根據(jù)切線的性質(zhì)可以得到∠OMC=90°,而根據(jù)已知條件可以得到∠DCB=30°,設(shè)AB為2xcm,根據(jù)等邊三角形得到CDxcm,而CE=2cm,又將量角器沿DC方向平移1cm,由此得到半圓的半徑為OM=(x﹣2)cm,OC=(x﹣1)cm,然后在Rt△OCM中利用三角函數(shù)可以列出關(guān)于x的方程,解方程即可求解.
如圖,設(shè)圖(2)中半圓的圓心為O,與BC的切點(diǎn)為M,連接OM,則OM⊥MC,∴∠OMC=90°,依題意得:∠DCB=30°,設(shè)AB為2xcm.
∵△ABC是等邊三角形,∴CDxcm,而CE=2cm,又將量角器沿DC方向平移1cm,∴半圓的半徑為OM=(x﹣2)cm,OC=(x﹣1)cm,∴sin∠DCB,∴,∴x,∴AB=2x=2(cm).
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點(diǎn)B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在Rt△ABC中,∠BAC=90°,CD為∠ACB的平分線,將∠ACB沿CD所在的直線對(duì)折,使點(diǎn)B落在點(diǎn)B′處,連結(jié)AB',BB',延長(zhǎng)CD交BB'于點(diǎn)E,設(shè)∠ABC=2α(0°<α<45°).
(1)如圖1,若AB=AC,求證:CD=2BE;
(2)如圖2,若AB≠AC,試求CD與BE的數(shù)量關(guān)系(用含α的式子表示);
(3)如圖3,將(2)中的線段BC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)角(α+45°),得到線段FC,連結(jié)EF交BC于點(diǎn)O,設(shè)△COE的面積為S1,△COF的面積為S2,求(用含α的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC繞著點(diǎn)C旋轉(zhuǎn),使點(diǎn)B與AB邊上的點(diǎn)D重合,點(diǎn)A落在點(diǎn)E,則點(diǎn)A、E之間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠C=90°,BC=8cm,AC=6cm.點(diǎn)P從B出發(fā)沿BA 向A運(yùn)動(dòng),速度為每秒1cm,點(diǎn)E是點(diǎn)B以P為對(duì)稱中心的對(duì)稱點(diǎn).點(diǎn)P運(yùn)動(dòng)的同時(shí),點(diǎn)Q從A出發(fā)沿AC向C運(yùn)動(dòng),速度為每秒2cm .當(dāng)點(diǎn)Q到達(dá)頂點(diǎn)C時(shí),P,Q同時(shí)停止運(yùn)動(dòng).設(shè)P, Q兩點(diǎn)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)t為何值時(shí),PQ∥BC ?
(2)設(shè)四邊形PQCB的面積為y,求y關(guān)于t的函數(shù)解析式;
(3)四邊形PQCB的面積與△APQ面積比能為3:2嗎?若能,求出此時(shí)t的值;若不能,請(qǐng)說(shuō)明理由;
(4)當(dāng)t為何值時(shí),△AEQ為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,AC是⊙O的兩條切線,B,C為切點(diǎn),連接CO并延長(zhǎng)交AB于點(diǎn)D,交⊙O于點(diǎn)E,連接BE,連接AO.
(1)求證:AO∥BE;
(2)若DE=2,tan∠BEO=,求DO的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD是BC邊上的中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作BC的平行線交BE的延長(zhǎng)線于點(diǎn)F,連接CF.
(1)求證:AF=DC;
(2)若AB⊥AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:一次函數(shù) 的圖象與坐標(biāo)軸交于A、B兩點(diǎn),點(diǎn)P是函數(shù)(0<x<4)圖象上任意一點(diǎn),過(guò)點(diǎn)P作PM⊥y軸于點(diǎn)M,連接OP.
(1)當(dāng)AP為何值時(shí),△OPM的面積最大?并求出最大值;
(2)當(dāng)△BOP為等腰三角形時(shí),試確定點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB,AC是⊙O的兩條切線,B,C為切點(diǎn),連接CO并延長(zhǎng)交AB于點(diǎn)D,交⊙O于點(diǎn)E,連接BE,連接AO.
(1)求證:AO∥BE;
(2)若DE=2,tan∠BEO=,求DO的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com