【題目】某校的一個數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為“環(huán)廣西公路自行車世界巡回賽”的專題調(diào)查活動,取隨機抽樣的方式進行問卷調(diào)查,問卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個等級,分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計圖,請結(jié)合圖中信息解答下列問題:
(1)請求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計圖補充完整.
(2)估計該校1500名學(xué)生中“C等級”的學(xué)生有多少人?
(3)在“B等級”的學(xué)生中,初三學(xué)生共有4人,其中1男3女,在這4個人中,隨機選出2人進行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請用列表法或樹狀圖的方法求解.
【答案】(1)50人,圖見解析;(2)估計該校1500名學(xué)生中“C等級”的學(xué)生有300人;(3)
【解析】分析:(1)、收下根據(jù)A的人數(shù)和百分比得出被調(diào)查的總?cè)藬?shù),然后得出D等級的人數(shù),將圖形進行補全;(2)、根據(jù)C等級在樣本中所占的比例估計出總?cè)藬?shù);(3)、根據(jù)題意列出表格,然后根據(jù)概率的計算法則求出概率.
詳解:(1)本次被調(diào)查的學(xué)生人數(shù)為15÷30%=50人,
則D等級人數(shù)為50﹣(15+20+10)=5(人),
補全統(tǒng)計圖如下:
(2)1500×=300(人),
答:估計該校1500名學(xué)生中“C等級”的學(xué)生有300人;
(3)列表如下:
第一次所選 第二次所選 | 男 | 女 | 女 | 女 |
男 | 男,女 | 男,女 | 男,女 | |
女 | 女,男 | 女,女 | 女,女 | |
女 | 女,男 | 女,女 | 女,女 | |
女 | 女,男 | 女,女 | 女,女 |
由上表可知,從4為同學(xué)中選兩位同學(xué)的等可能結(jié)果共有12種,其中所選兩位同學(xué)中有男同學(xué)的結(jié)果共有6種. 所以所選兩位同學(xué)中有男同學(xué)的概率為=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,在下列代數(shù)式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0; 其中正確的個數(shù)為( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長為2,將射線AB繞點A順時針旋轉(zhuǎn)α,所得射線與線段BD交于點M,作CE⊥AM于點E,點N與點M關(guān)于直線CE對稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時:
①依題意補全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時,探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時,若邊AD的中點為F,直接寫出線段EF長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6,BC=8,點D是BC邊上的一個動點,點E在AC邊上,∠ADE=∠B.設(shè)BD的長為x,CE的長為y.
(1)當(dāng)D為BC的中點時,求CE的長;
(2)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如果△ADE為等腰三角形,求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,AD與⊙O相切于一點A,DE與⊙O相切于點E,點C為DE延長線上一點,且CE=CB.
⑴求證:BC為⊙O的切線;
⑵若AB=2,AD=2,求線段BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖像的一部分,其對稱軸是直線x=-1,且過點(-3,0),下列說法:①abc>0;②2a-b=0;③4a+2b+c<0;④若(-5,y1),(2.5,y2)是拋物在線兩點,則y1>y2,其中正確的是( )
A.② B.②③ C.②④ D.①②
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(2017浙江省臺州市)在平面直角坐標(biāo)系中,借助直角三角板可以找到一元二次方程的實數(shù)根.比如對于方程,操作步驟是:
第一步:根據(jù)方程的系數(shù)特征,確定一對固定點A(0,1),B(5,2);
第二步:在坐標(biāo)平面中移動一個直角三角板,使一條直角邊恒過點A,另一條直角邊恒過點B;
第三步:在移動過程中,當(dāng)三角板的直角頂點落在x軸上點C處時,點C的橫坐標(biāo)m即為該方程的一個實數(shù)根(如圖1);
第四步:調(diào)整三角板直角頂點的位置,當(dāng)它落在x軸上另一點D處時,點D的橫坐標(biāo)n即為該方程的另一個實數(shù)根.
(1)在圖2中,按照“第四步”的操作方法作出點D(請保留作出點D時直角三角板兩條直角邊的痕跡);
(2)結(jié)合圖1,請證明“第三步”操作得到的m就是方程的一個實數(shù)根;
(3)上述操作的關(guān)鍵是確定兩個固定點的位置,若要以此方法找到一元二次方程 (a≠0,≥0)的實數(shù)根,請你直接寫出一對固定點的坐標(biāo);
(4)實際上,(3)中的固定點有無數(shù)對,一般地,當(dāng)m1,n1,m2,n2與a,b,c之間滿足怎樣的關(guān)系時,點P(m1,n1),Q(m2,n2)就是符合要求的一對固定點?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平行于x軸的直線分別與一次函數(shù)y=-x+3和二次函數(shù)y= x2 -2x-3的圖象交于A(x1,y1),B(x2,y2),C(x3,y3)三點,且x1<x2<x3,設(shè)m= x1+x2+x3,則m的取值范圍是____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com