【題目】正方形ABCD的邊長(zhǎng)為2,將射線AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α,所得射線與線段BD交于點(diǎn)M,作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN.
(1)如圖,當(dāng)0°<α<45°時(shí):
①依題意補(bǔ)全圖;
②用等式表示∠NCE與∠BAM之間的數(shù)量關(guān)系:___________;
(2)當(dāng)45°<α<90°時(shí),探究∠NCE與∠BAM之間的數(shù)量關(guān)系并加以證明;
(3)當(dāng)0°<α<90°時(shí),若邊AD的中點(diǎn)為F,直接寫出線段EF長(zhǎng)的最大值.
【答案】(1)①補(bǔ)圖見(jiàn)解析;②∠NCE=2∠BAM;(2)∠NCE+∠BAM=90°,證明見(jiàn)解析;(3)1+.
【解析】
(1)作CE⊥AM于點(diǎn)E,點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,連接CN.由△ABM≌△CBM,可得∠BAM=∠BCM,由∠ABC=∠CEA=90°,BC,AE交于一點(diǎn),可得∠BAM=∠BCE,即可得到∠MCE=2∠BAM,由點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,可得CN=CM,即可得到∠NCE=∠MCE,進(jìn)而得出∠NCE=2∠BAM;
(2)連接CM,判定△ADM≌△CDM,即可得到∠DAM=∠DCM,再根據(jù)∠DAQ=∠ECQ,即可得到∠NCE=∠MCE=2∠DAQ,即,再根據(jù)∠BAM=∠BCM,∠BCM+∠DCM=90°,即可得到;
(3)依據(jù)∠CEA=90°,即可得到點(diǎn)E在以AC為直徑的圓上,當(dāng)EF經(jīng)過(guò)圓心O時(shí),即可得出線段EF長(zhǎng)的最大值.
(1)①補(bǔ)全的圖形如圖所示:
②∠NCE=2∠BAM.理由如下:
如圖1,連接MC.
∵ABCD是正方形,∴AB=BC,∠ABM=∠CBM.
∵BM=BM,∴△ABM≌△CBM,∴∠BAM=∠BCM.
∵∠ABC=∠CEA=90°,BC,AE交于一點(diǎn),∴∠BAM=∠BCE,∴∠MCE=2∠BAM.
∵點(diǎn)N與點(diǎn)M關(guān)于直線CE對(duì)稱,∴CN=CM,∴∠NCE=∠MCE,∴∠NCE=2∠BAM.
故答案為:∠NCE=2∠BAM.
(2).理由如下:
如圖,連接CM.
∵AD=CD,∠ADM=∠CDM,DM=DM,∴△ADM≌△CDM,∴∠DAM=∠DCM.
∵∠ADQ=∠CEQ=90°,∠AQD=∠CQE,∴∠DAQ=∠ECQ,∴∠NCE=∠MCE=2∠DAQ,∴.
∵∠BAM=∠BCM,∠BCM+∠DCM=90°,∴.
(3)如圖,∵∠CEA=90°,∴點(diǎn)E在以AC為直徑的圓上,O為圓心,由題可得:OFCD=1,OE=OCAC.
∵OE+OF≥EF,∴當(dāng)EF經(jīng)過(guò)圓心O時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)被平均分成等份的轉(zhuǎn)盤,每一個(gè)扇形中都標(biāo)有相應(yīng)的數(shù)字,甲乙兩人分別轉(zhuǎn)動(dòng)轉(zhuǎn)盤,設(shè)甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為,乙轉(zhuǎn)動(dòng)轉(zhuǎn)盤后指針?biāo)竻^(qū)域內(nèi)的數(shù)字為(當(dāng)指針在邊界上時(shí),重轉(zhuǎn)一次,直到指向一個(gè)區(qū)域?yàn)橹梗?/span>
直接寫出甲轉(zhuǎn)動(dòng)轉(zhuǎn)盤后所指區(qū)域內(nèi)的數(shù)字為負(fù)數(shù)的概率;
用樹(shù)狀圖或列表法,求出點(diǎn)落在第二象限內(nèi)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一張透明的平行四邊形膠片沿對(duì)角線剪開(kāi),得到圖①中的兩張三角形膠片和.將這兩張三角形膠片的頂點(diǎn)B與頂點(diǎn)E重合,把繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn),這時(shí)AC與DF相交于點(diǎn)O.
(1)當(dāng)旋轉(zhuǎn)至如圖②位置,點(diǎn)B(E),C,D在同一直線上時(shí),∠AFD與∠DCA的數(shù)量關(guān)系是 .
(2)當(dāng)繼續(xù)旋轉(zhuǎn)至如圖③位置時(shí),(1)中的結(jié)論還成立嗎?請(qǐng)說(shuō)明理由.
(3)在圖③中,連接BO,AD,探索BO與AD之間有怎樣的位置關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:二次函數(shù)圖象的頂點(diǎn)坐標(biāo)是(3,5),且拋物線經(jīng)過(guò)點(diǎn)A(1,3).
(1)求此拋物線的表達(dá)式;
(2)如果點(diǎn)A關(guān)于該拋物線對(duì)稱軸的對(duì)稱點(diǎn)是B點(diǎn),且拋物線與y軸的交點(diǎn)是C點(diǎn),求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,∠ACB=90°,AC=BC=2,將直角邊AC繞A點(diǎn)逆時(shí)針旋轉(zhuǎn)至AC′,連接BC′,E為BC′的中點(diǎn),連接CE,則CE的最大值為( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=(x>0)的圖象交于點(diǎn)P(n,2),與x軸交于點(diǎn)A(﹣4,0),與y軸交于點(diǎn)C,PB⊥x軸于點(diǎn)B,且AC=BC.
(1)求一次函數(shù)、反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b<的x的取值范圍;
(3)反比例函數(shù)圖象上是否存在點(diǎn)D,使四邊形BCPD為菱形?如果存在,求出點(diǎn)D的坐標(biāo);如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,要在寬AB為20米的甌海大道兩邊安裝路燈,路燈的燈臂CD與燈柱BC成120°角,燈罩的軸線DO與燈臂CD垂直,當(dāng)燈罩的軸線DO通過(guò)公路路面的中心線(即O為AB的中點(diǎn))時(shí)照明效果最佳,若CD=米,則路燈的燈柱BC高度應(yīng)該設(shè)計(jì)為____米(計(jì)算結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校的一個(gè)數(shù)學(xué)興趣小組在本校學(xué)生中開(kāi)展主題為“環(huán)廣西公路自行車世界巡回賽”的專題調(diào)查活動(dòng),取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為“非常了解”、“比較了解”、“基本了解”、“不太了解”四個(gè)等級(jí),分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:
(1)請(qǐng)求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.
(2)估計(jì)該校1500名學(xué)生中“C等級(jí)”的學(xué)生有多少人?
(3)在“B等級(jí)”的學(xué)生中,初三學(xué)生共有4人,其中1男3女,在這4個(gè)人中,隨機(jī)選出2人進(jìn)行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請(qǐng)用列表法或樹(shù)狀圖的方法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
如圖,在正方形ABCD中,點(diǎn)E、F分別在CD、BC上,且BF=CE,連接BE、AF相交于點(diǎn)G,則下列結(jié)論不正確的是( )
A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC=90° D.AG⊥BE
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com