【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對角線AC上的兩點,AE=CF.
(1)求證:四邊形DEBF是平行四邊形;
(2)如果AE=EF=FC,請直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O為正方形ABCD的中心,BE平分∠DBC交DC于點E,延長BC到點F,使FC=EC,連結DF交BE的延長線于點H,連結OH交DC于點G,連結HC.則以下四個結論中:①OH∥BF,②GH=BC,③BF=2OD,④∠CHF=45°.正確結論的個數(shù)為( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰△ABC中,點D、E分別是邊AB、AC上的兩點(點D不與點A、 點B重合),且DE∥BC,以DE為一邊,在四邊形DBCE的內部作正方形DEFG,已知AB=AC=5,BC=6.
(1)試求△ABC的面積;
(2)當GF與BC重合時,求正方形DEFG的邊長;
(3)若BG的長度等于正方形DEFG的邊長,試求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料,并用相關的思想方法解決問題.
計算:(1﹣﹣﹣)×(++)﹣(1﹣﹣﹣)×(++).
令++=t,則原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=,
問題:
(1)計算:(1﹣﹣﹣)×(++)﹣(1﹣﹣﹣)×(++);
(2)解方程(x2+5x+1)(x2+5x+7)=7.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程:x2﹣(m﹣3)x﹣m=0
(1)證明原方程有兩個不相等的實數(shù)根;
(2)若拋物線y=x2﹣(m﹣3)x﹣m與x軸交于A(x1,0),B(x2,0)兩點,則A,B兩點間的距離是否存在最大或最小值?若存在,求出這個值;若不存在,請說明理由.(友情提示:AB=|x1﹣x2|)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個字母的等式或不等式:①=-1;②ac+b+1=0;③abc>0;④a-b+c>0.正確的序號是______________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,已知AB∥CD,求證:∠EGF=∠AEG+∠CFG
(2)如圖2,已知AB∥CD,∠AEF與∠CFE的平分線交于點G.猜想∠G的度數(shù)。證明你的猜想
(3)如圖3,已知AB∥CD,EG平分∠AEH,EH平分∠GEF,FH平分∠CFG,FG平分∠HFE,∠G=95°,求∠H的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,長方形ABCD的邊AB在y軸正半軸上,頂點A的坐標為(0,2),設頂點C的坐標為(a,b).
(1)頂點B的坐標為 ,頂點D的坐標為 (用a或b表示);
(2)如果將一個點的橫坐標作為x的值,縱坐標作為y的值,代入方程2x+3y=12成立,就說這個點的坐標是方程2x+3y=12的解.已知頂點B和D的坐標都是方程2x+3y=12的解,求a,b的值;
(3)在(2)的條件下,平移長方形ABCD,使點B移動到點D,得到新的長方形EDFG,
①這次平移可以看成是先將長方形ABCD向右平移 個單位長度,再向下平移 個單位長度的兩次平移;
②若點P(m,n)是對角線BD上的一點,且點P的坐標是方程2x+3y=12的解,試說明平移后點P的對應點P′的坐標也是方程2x+3y=12的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△BAD和△BCE均為等腰直角三角形,∠BAD=∠BCE=90°,點M為DE的中點,過點E與AD平行的直線交射線AM于點N.
(1)當A,B,C三點在同一直線上時(如圖1),直接寫出線段AD與NE的數(shù)量關系為 .
(2)將圖1中的△BCE繞點B旋轉,當A,B,E三點在同一直線上時(如圖2),判斷△ACN是什么特殊三角形并說明理由.
(3)將圖1中△BCE繞點B旋轉到圖3位置,此時A,B,M三點在同一直線上.若AC=3,AD=1,則四邊形ACEN的面積為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com