【題目】閱讀下列材料,并用相關的思想方法解決問題.
計算:(1﹣﹣﹣)×(++)﹣(1﹣﹣﹣)×(++).
令++=t,則原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣t﹣t+t2=,
問題:
(1)計算:(1﹣﹣﹣)×(++)﹣(1﹣﹣﹣)×(++);
(2)解方程(x2+5x+1)(x2+5x+7)=7.
科目:初中數(shù)學 來源: 題型:
【題目】一家水果店以每斤2元的價格購進某種水果若干斤,然后以每斤4元的價格出售,每天可售出100斤,通過調(diào)查發(fā)現(xiàn),這種水果每斤的售價每降低0.1元,每天可多售出20斤.
(1)若將這種水果每斤的售價降低x元,則每天的銷售量是多少斤(用含x的代數(shù)式表示);
(2)銷售這種水果要想每天盈利300元,且保證每天至少售出260斤,那么水果店需將每斤的售價降低多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,O為坐標原點,A、B兩點的坐標分別為A(0,m)、B(n,0),且|m﹣n﹣3|+=0,點P從A出發(fā),以每秒1個單位的速度沿射線AO勻速運動,設點P的運動時間為t秒.
(1)求OA、OB的長;
(2)連接PB,設△POB的面積為S,用t的式子表示S;
(3)過點P作直線AB的垂線,垂足為D,直線PD與x軸交于點E,在點P運動的過程中,是否存在這樣的點P,使△EOP≌△AOB?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△BAC中,∠BAC=90°,E是BC的中點,AD∥BC,AE∥DC,EF⊥CD于點F.
(1)求證:DC=EC.
(2)若AB=6,BC=10,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有A型、B型、C型三種不同的紙板,其中A型:邊長為a厘米的正方形;B型:長為a厘米,寬為1厘米的長方形;C型:邊長為1厘米的正方形.
(1)A型2塊,B型4塊,C型4塊,此時紙板的總面積為 平方厘米;
①從這10塊紙板中拿掉1塊A型紙板,剩下的紙板在不重疊的情況下,可以緊密的排出一個大正方形,這個大正方形的邊長為 厘米;
②從這10塊紙板中拿掉2塊同類型的紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出兩個相同的大正方形,請問拿掉的是2塊哪種類型的紙板?(計算說明)
(2)A型12塊,B型12塊,C型4塊,從這28塊紙板中拿掉1塊紙板,使得剩下的紙板在不重疊的情況下,可以緊密地排出三個相同形狀的大正方形,則大正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2x+m.
(1)如果二次函數(shù)的圖象與x軸有兩個交點,求m的取值范圍;
(2)如圖,二次函數(shù)的圖象過點A(3,0),與y軸交于點B,直線AB與這個二次函數(shù)圖象的對稱軸交于點P,求點P的坐標.
(3)根據(jù)圖象直接寫出使一次函數(shù)值大于二次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖1,四邊形ABCD是平行四邊形,E,F是對角線AC上的兩點,AE=CF.
(1)求證:四邊形DEBF是平行四邊形;
(2)如果AE=EF=FC,請直接寫出圖中2所有面積等于四邊形DEBF的面積的三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖, AF平分∠BAC,BC⊥AF, 垂足為E,點D與點A關于點E對稱,PB分別與線段CF,AF相交于P,M.
(1)求證:AB=CD;
(2)若∠BAC=2∠MPC,請你判斷∠F與∠MCD的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知長方形,點,.
(1)如圖,有一動點在第二象限的角平分線上,若,求的度數(shù);
(2)若把長方形向上平移,得到長方形.
①在運動過程中,求的面積與的面積之間的數(shù)量關系;
②若,求的面積與的面積之比.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com